簡易檢索 / 詳目顯示

研究生: 陳韋豪
Wei-Hao Chen
論文名稱: 探討不同扶壁處理方式對連續壁變形之影響
Effect of Buttress Wall Treatment on the Wall Deflection in Deep Excavation
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 林培元
Pei-Yan Lin
何樹根
Shu-Gen He
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 155
中文關鍵詞: 扶壁深開挖工程抗彎勁度連續壁變形PCU工法三向度有限元素分析
外文關鍵詞: Buttress wall, Deep excavation, Bending stiffness, Wall deflection, PCU method, Finite element analysis
相關次數: 點閱:276下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為利用三向度有限元素分析不同扶壁處理方法對連續壁壁體變形的影響。首先針對不同扶壁拆除時機進行一連串的參數研究,研究成果顯示,若扶壁隨開挖逐階段拆除扶壁,其抑制變形成效有限。若開挖至最後開挖面再敲除開挖面以上扶壁,則扶壁可發揮較多摩擦力以減少大量壁體變形。若開挖至最後開挖面後再建造筏式基礎及地樑系統並拆除開挖面以上扶壁,此扶壁拆除方法可減少近一半的無扶壁之連續壁變形,但此方法在實際施工上有介面衝突等複雜問題。若開挖至最後開挖面後再鋪設劣質混凝土並拆除開挖面以上的扶壁,此扶壁拆除方法所抑制連續壁變形成效不遜於前述之各扶壁處理方法,且沒有施工複雜等問題,並針對此扶壁拆除工法進行特性研究。
    若在連續壁變形之反曲點以上設置相同高度的扶壁,則可大幅減少壁體變形,且大於反曲點高度的扶壁對抑制變形的成效差異不大。扶壁貫入深度所影響為最終開挖面以下的壁體變形,對抑制整體連續壁變形效益不大。
    在本研究中,開挖至最後開挖面後再鋪設劣質混凝土並拆除開挖面以上的扶壁之方法,其使用較短之扶壁高度和貫入深度,即能有極佳的抑制變形成效。


    The purpose of this study is to study the effect of different buttress treatment on the wall deflection by using the three-dimensional finite element method. First, a series of parametric studies were conducted for different timing of buttress wall removal. The results show that if the buttress wall is demolished along with the excavation stage, the reduction of the wall deflection is limited. When the excavation reaches to the final excavation surface and the buttress wall above the excavation surface is demolished, it would provide more friction and stiffness to reduce the wall deflection. On the other hand, if the buttress wall is demolished after constructing the raft foundation and ground beam system, then it can reduce the wall deflection two times smaller than those without the buttress wall. However, this method might be difficult to implement in real construction because the buttress wall would affect the construction of the raft foundation and ground beam system.
    Therefore, if the buttress wall is demolished after adding the poor concrete below the final excavation surface, then the wall deflection is close to those directly constructing raft foundation and ground beam systems. Meanwhile, this method has no problem in the implementation in real construction. If the buttress wall height is equal to the inflection point of the wall deflection, then the wall deflection can be reduced significantly. However, the buttress wall greater than the height of the inflection point has little effect in reducing the wall deflection. The results also show that the penetration depth of the buttress wall has little effect in reducing the wall deflection. In this study, the method of laying poor concrete and removing the buttress wall above the final excavation surface using shorter buttress wall height and penetration depth than those without the buttress wall, it can provide good performance in terms of reducing the wall deflection and ground settlement.

    中文摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號索引 XIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法及內容 2 第二章 文獻回顧 3 2.1 深開挖所引致之壁體變形 3 2.1.1 連續壁壁體變形之影響因子 3 2.1.2 連續壁壁體之側向位移行為 4 2.1.3 扶壁、地中壁及U型壁之鄰房保護措施 10 2.2 扶壁之應用 13 2.3 扶壁作為無支撐工法對於深開挖工程之改變 27 2.4 小結 28 第三章 扶壁處理方式之參數研究 29 3.1 前言 29 3.2 假設案例與施工程序 30 3.2.1 基本假設案例 30 3.2.2 施工程序 31 3.3 假設案例之分析 33 3.3.1 HS模式及土壤參數 33 3.3.2 結構參數之決定 36 3.3.3 模型邊界與網格建立 40 3.3.4 施工程序模擬 43 3.4 扶壁拆除時機對於連續壁壁體變形之影響 48 3.5 扶壁數量在扶壁拆除時機所引致連續壁壁體變形之影響 58 3.6 扶壁拆除新工法對於連續壁壁體變形之影響 68 3.7 討論 85 第四章 扶壁拆除新工法的特性及研究 87 4.1 前言 87 4.2 扶壁高度及其抑制壁體變形之反曲點機制 87 4.3 扶壁貫入深度 98 4.4 壁體厚度對於連續壁壁體變形曲線與沉陷之影響 106 4.4.1 扶壁厚度 106 4.4.2 連續壁厚度 109 4.4.3 壁體厚度影響變形之機理 112 4.5 PCU工法混凝土抗壓強度之連續壁變形探討 113 4.6 扶壁拆除新工法與常見拆除工法之比較 116 4.6.1 連續壁變形曲線與地盤沉陷 116 4.6.2 PCU工法安全破壞檢核 123 4.7 討論 126 第五章 結論與建議 127 5.1 結論 127 5.2 建議 130 參考文獻 131 附錄A 135

    [1]中華民國內政部營建署之混凝土結構設計規範。(2019)
    [2]吳沛軫、王明俊、彭嚴儒(1997)。連續壁變形行為探討。第七屆大地工程學術研究討論會,601-608。
    [3]林亦郎(2010)。地中壁對粘土層開挖變形影響之研究。博士論文,國立台灣科技大學營建工程研究所,台北。
    [4]林雅雯(1999)。地中壁應用於深開挖之分析研究。碩士論文,國立台灣科技大學營建工程研究所,台北。
    [5]胡邵敏(1992)。深開挖工程鄰產保護設計與施工(一): 開挖工程對鄰產之影響及其安全評估。地工技術雜誌,(49),35-50。
    [6]孫漢豪、蘇百加(1997)。橫隔壁於深開挖工程應用之案例探討。第七屆大地工程學術研究討論會,655-662。
    [7]歐章煜(2017)。進階深開挖工程分析與設計。科技圖書,初版。
    [8]鄧文賓(2011)。扶壁對深開挖壁體變形影響之研究。碩士論文,國立台灣科技大學營建工程研究所,台北。
    [9]謝旭昇、呂芳熾(1999)。淺論扶壁式連續壁之分析與設計。地工技術雜誌,(76),39-50。
    [10]謝百鈎(1999)。黏土層開挖引致地盤移動之預測。博士論文,國立台灣科技大學營建工程研究所,台北。
    [11]謝維漢(2014)。扶壁抑制開挖連續壁變形之成效研究。碩士論文,國立台灣科技大學營建工程研究所,台北。
    [12]ACI Committee 318 (1995) Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95). American Concrete Institute (ACI), Farmington Hills.
    [13]Brinkgreve R. B. J., Kumaraswamy, S., Swolfs, W, M. (2017). PLAXIS 3D Manual. Delft, Netherlands, PLAXIS.
    [14]Calvello, M. & Finno. R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computer and Geotechnics, 31(5), 410-424.
    [15]Clough, G. W. & O’Rourke, T. D. (1990). Construction induced movements of in situ walls. Design and performance of earth retaining structures, 439-470.
    [16]Hsieh, P. G. & Ou, C. Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35(6), 1004-1017.
    [17]Hsieh, H. S., Wu, L. H., Lin, T. M., Cherng, J. C. & Hsu, W. T. (2011). Performance of T-shaped diaphragm wall in a large scale excavation. Journal of Geotechnical Engineering, 6(3), 135-144.
    [18]Hsieh, P. G., Ou, C. Y. & Hsieh, W. H. (2016). Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall, Acta Geotechnica, 11, 1087-1102.
    [19]Jaky, J. (1944). The coefficient of earth pressure at rest. Journal for Society of Hungarian Architects and Engineers, 78(22), 355-358.
    [20]Lim, A. & Ou, C. Y. (2017). Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Journal of Tunneling and Underground Space Technology, 63, 118-132.
    [21]Lim, A. & Ou, C. Y. (2018). Performance and three-dimensional analyses of a wide excavation in soft soil with strut-free retaining system. International Journal of Geomechanics, 18(9).
    [22]Lim, A. (2018). Investigation of integrated buttress and cross walls to control movements induced by excavation, Ph.D. Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [23]Mana, A. I. & Clough, G. W. (1981). Prediction of movements for braced cut in clay. Journal of the Geotechnical Engineering Division, ASCE, 107(8), 759-777.
    [24]Masuda, T., Einstein, H. H., & Mitachi, T. (1994). Prediction of Lateral Deflection of Diaphragm Wall in Deep Excavation. Journal of Geotechnical Engineering, Proceedings of Japan Society of Civil Engineers, 505, 19-29.
    [25]Ou, C. Y., Hsieh, P. G. & Chiou, D. C. (1993). Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal, 30(5), 758-767.
    [26]Ou, C. Y., Hsieh, P. G., & Lin, Y. L. (2011). Performance of excavations with cross walls. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 137, 94-104.
    [27]Ou, C. Y., Teng, F. C., Seed, R. B. & Wang, I. W. (2008). Using buttress walls to reduce excavation-induced movements. Journal of Geotechnical Engineering, ASCE, Proceedings of the Institution of Civil Engineering, 209-222.
    [28]Schanz, T. (1999). Formulation and verification of the Hardening-Soil model. RBJ Brinkgreve, Beyond 2000 in Computational Geotechnics, 281-290.

    QR CODE