簡易檢索 / 詳目顯示

研究生: 姚鈞楷
Jyun-Kai Yao
論文名稱: Echelle光柵運用於干涉頻譜之生醫感測
Echelle Grating for Interferometry-based Biosensing
指導教授: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
口試委員: 張勝良
Sheng-Lyang Jang
何文章
Wen-Jeng Ho
李志堅
Chih-Chien Lee
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: Echelle光柵表面電漿干涉生醫感測
外文關鍵詞: Echelle grating, Surface Plasmon Interferometer, Biosensing
相關次數: 點閱:197下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中,我們將設計與製作光纖通訊中之分波多工器,它是在矽基板上作出一個光纖耦合的輸入端,平面波導凹面式光柵及五個光纖耦合的輸出端。我們使用Photon Design的商業軟體,包含模擬Echelle光柵的EPIPPROP,與分佈式布拉格反射(Distributed Bragg Reflector, DBR)光柵設計的FIMMPROP,以這兩套軟體互相搭配使用,做為整個分波多工器的模擬設計。為了讓Echelle光柵與表面電漿干涉儀結合能有光譜儀的功能,本實驗室所設計元件為1x5的密分波多工器(Dense Wavelength Division Multiplexer, DWDM),通道間隔為0.8 nm,所有光波導線寬皆為0.45 μm,凹面階梯式光柵會有金屬沉積於反射面的設計,DBR光柵也經由計算發現Duty Cycle為0.5、週期0.3 μm、光柵週期數為6的情況下,能有最佳的反射頻譜。
表面電漿共振分別有三種耦合方式:光柵耦合、波導耦合和稜鏡耦合。本論文所採取的方式為矽波導耦合來產生表面電漿之生物醫學感測器。主要是利用波導的上面與側邊都覆蓋一層金屬,當光經過有金屬覆蓋的波導時,將會在矽與金屬交接面產生一表面電漿波,金屬與待測物產生另一表面電漿波,當這兩表面電漿波傳到金屬尾端後重疊在一起,這時就會有干涉現象的發生,這種機制相當於馬赫詹德干涉儀(Mach-Zehnder Interferometer)。
生醫感測元件除了表面電漿波導,由元件長度引起的相位變化量也是生物干涉感測的一種應用。因此我們設計微環形共振腔(Microring Resonator, MRR),不同品質因子(Quality Factor, Q-factor)在不同濃度的檢測溶液下,搭配低同調光纖光學干涉技術(Optical Fiber Low Coherence Interferometry, OFLCI),來量測干涉波包的位移變化量。
本實驗室大部分的元件都是在國家奈米元件實驗室(National Nano Device Laboratories, NDL)製做,包含Echelle光柵和表面電漿干涉儀(Surface Plasmon Interferometer, SPI)。除此之外也有些元件是為了在NDL無法完成的製程條件,例如 Echelle光柵搭配DBR光柵元件,因為光柵的週期為0.3 μm,已經超過NDL的曝光機製程的極限0.35 μm,因此送到IMEC(Interuniversity MicroElectronic Center)代工。本實驗室自行操作的製程步驟從包含光罩設計、黃光微影、乾式蝕刻、金屬的物理氣相沉積和氧化保護層的化學氣相沉積等製程步驟。最後會利用拍攝掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)來檢視波導的側壁粗糙度和聚合物是否殘留等等。


In this thesis, the wavelength demultiplexer is designed and fabricated on the silicon wafer for the fiber optical communications, which includes input/output coupling and concave diffraction grating. The EPIPPROP and FIMMPROP from the commercial software of Photon Design are dedicated to the simulation of Echelle grating and distributed Bragg reflector (DBR) grating, respectively. In order to integrate Echelle grating into the surface plasmon interferometer for spectrometer applications, a 0.8-nm channel spacing is implemented and demonstrated in the simulation. The siliconwire waveguide width is 0.45 μm and concave grating is coated with the aluminum metal for better reflection. The experimental data on Echelle grating will be based on the DBR grating with 0.5-duty cycle, 0.3-µm period, and 6 period number.
There are three coupling approaches in surface plasmons: grating coupler, optical waveguide coupler and prism coupler. In this thesis, a siliconwire based biological sensors through surface plasma polaritons will be demonstrated. The main structure is to implement the surrounding metals on top and sidewall of the silicon-wire for biosensing. When the optical mode passes through the sensor area, the surface plasma waves are induced in the surfaces between metal and dielectric films and form the interference phenomena. At the end of sensing region, three surface plasmon polaritons will combine together and illustrate interferograms.
In addition to the surface plasmon interference in siliconwire, a device length caused phase variation could be utilized for interference biosensing. Therefore, we design a microring resonator under different quality factor and concentrations to be characterized by the optical fiber low coherence interferometery through interferogram shift.
The process in the National Nano Device Laboratories (NDL) will include Echelle grating and surface plasmon interferometer, which includes the photolithography, etch, physical vapor deposition, plasma-enhanced chemical vapor deposition, and scanning electron microscopy. Due to NDL fabrication limitation, the DBR grating with the 0.3-μm period from Echelle spectrometer grating was sent out and processed in IMEC (Interuniversity MicroElectronics Center).

摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 3 1.3 論文架構 4 第二章 理論與特性介紹 5 2.1 波導結構 5 2.2 單、多模條件 7 2.3 雙折射效應(Birefringence Effect) 9 2.4 波導傳輸損耗 11 2.5 分波多工 19 2.6 解多工器之參數定義 21 第三章 Echelle光柵介紹與模擬計算 23 3.1 總覽 23 3.2 分佈式布拉格反射(Distributed Bragg Reflector, DBR) 26 3.3 模擬計算 29 第四章 生醫感測元件 41 4.1 引言 41 4.2 表面電漿 41 4.3 表面電漿之激發條件 48 4.4 表面電漿波導模擬 51 4.5 SPI結合Echelle光柵頻譜儀 58 4.6 微環形共振器 (Microring Resonators, MRR) 59 第五章 半導體製程技術 70 5.1 引言 70 5.2 機台介紹 70 5.3 矽線波導製程步驟 78 5.4 蝕刻氣體討論 103 5.5 製程總結 107 第六章 量測系統與量測結果 108 6.1 Echelle光柵 108 6.2 SPI生醫感測元件 111 6.3 MRR生醫感測元件 115 6.4 垂直量測系統 116 第七章 結論與未來展望 117 7.1 結論 117 7.2 未來展望 118 參考文獻 120

[1] D. Bischoff, “Wavelength multiplexing: WDM and DWDM systems,” pp. 1-27, 2009.
[2] C. Systems, “Introduction to DWDM technology,” Cisco Systems, Inc., San Jose, USA, 2001.
[3] D. Feng, W. Qian, H. Liang, C.-C. Kung, J. Fong, B. J. Luff and M. Asghari, “Fabrication insensitive Echelle grating in silicon-on-insulator platform,” IEEE Photonics Technology Letters, vol. 23, no. 5, pp. 284-286, 2011.
[4] S. Robinson, S. Jasmine and R. Pavithra, “Investigation on hybrid WDM (DWDM+CWDM) free space optical communication system,” ICTACT Journal on Communication Technology, vol. 06, no. 04, pp. 1187-1192, 1998.
[5] Md. Surat-E-Mostafa, Md. Muksudul Alam, Md. Al Faisal Reza, “Crosstalk effect in a transmission line for dense wavelength division multiplexing (DWDM) system,” International Journal of Scientific & Technology Research, vol. 2, pp. 237-240, 2013.
[6] S. Pathak, P. Dumon, D. Van Thourhout, W. Bogaerts, Senior, “Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on- Insulator,” IEEE Photonics Journal, vol. 6, no. 5, pp. 1-9, 2004.
[7] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier , A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne , M. Packirisamy, M. Pearson and D. -X. Xu, “Planar waveguide Echelle grating in silica-on-silicon,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 503-505, 2004.
[8] P. E. Precisely, “The advantages of Echelle spectrographs for Raman spectroscopy,” Perkin Elmer, Inc., Waltham, 2008.
[9] W. Demtroder, “Laser spectroscopy: Basic concepts and instrumentation,” Springer, Germany, 2003.
[10] K. Kodate, Y. Komai and K. Okamoto, “Compact spectroscopic sensor using an arrayed waveguide grating,” Japanese Journal of Applied Physics, vol. 45, no. 8B, pp. 6742–6749, 2008.
[11] J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics Journal, vol. 4, no. 2, pp. 317-326, 2012.
[12] K. Yamada, "Silicon photonic wire waveguides: Fundamentals and applications," in Silicon Photonics II: Components and Integration, Heidelberg, Springer, pp. 1-4, 2011.
[13] H. Yamada, "Si photonic wire waveguide devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1378, 2006.
[14] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE Journal of Selective Topics Quantum Electron, vol. 4, no. 6, pp. 938-947, 1998.
[15] L. C. Kimerling, “Silicon microphotonics,” Applied Surface Science, vol. 159-160, pp. 8-13, 2000.
[16] L. Pavesi, “Will silicon be the photonic material of the third millenium?,” Journal of Physics: Condensed Matter, vol. 15, pp. R1196, 2003.
[17] G. T. Reed, “The optical age of silicon,” Nature, vol. 427, pp. 595-596, 2004.
[18] John Senior and M. Yousif Jamro, Optical Fiber Communications: Principles and Practice, 3rd edit, Financial Times/Prentice Hall, 2009.
[19] Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974 , 1991.
[20] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
[21] K. W. Ang and G. Q. L. Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser Focus World, vol. 46, no. 8, p. 41, 2010.
[22] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. T Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
[23] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
[24] A. Sakai, H. Go, and T. Baba, "Sharply bent optical waveguide silicon-on-insulator substrate," Symposium on Integrated Optics, vol. 4283, pp. 610-618, 2001.
[25] E. Marcatili, "Bends in optical dielectric guides," Bell System Technical Journal, vol. 48, no. 25, pp. 2103-2132, 1969.
[26] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75-83, 1975.
[27] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Optics Express, vol. 12, no. 8, pp. 1622-1631, 2004.
[28] V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides," Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
[29] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, no. 11, pp. 1617-1619, 2000.
[30] D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell System Technical Journal, vol. 48, pp. 3187-3215, 1969.
[31] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Optical and Quantum Electronics, vol. 26, pp. 977-986, 1994.
[32] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663, 2004.
[33] H. Takahashi, "Wavelength multiplexer/demultiplexer (MUX/DEMUX in WDM)," in Encyclopedic handbook of integrated optics, Boca Raton, Taylor & Francis Group, 2006, pp. 483-486.
[34] International Telecommunication Union, "ITU-T G.671, Series G: Transmission systems and media, digital systems and networks, Transmission characteristics of optical components and subsystems," ITU, 2012.
[35] S. V. Kartalopoulos, “Introduction to DWDM Technology,” Murray Hill: John Wiley & Sons Inc., 2000.
[36] J. Brouckaert , W. Bogaerts, P. Dumon, D. V. Thourhout and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silcon-on-insulator platform," Journal of Lightwave Technology, vol. 25, no. 5, pp. 1269-1275, 2007.
[37] C. J. Overbeck, R. R. Plamer, R. J. Stephenson and M. W. White, The concave grating spectrometer-Rowland mounting, USA: Central Scientific Company, pp. 1-4, 1941.
[38] J. James, Spectograph design fundamentals, New York: Cambridge University Press, p. 89, 2007.
[39] P. Cheben, "Wavelength dispersive planar waveguide devices: Echelle and arrayed waveguide gratings," in Optical waveguides: From Theory to Applied Technologies, CRC Press, pp. 173-185, 2007.
[40] J. D. Doménech, R. Baños, and P. Muñoz, “Echelle gratings with metal reflectors in generic thick silicon technology,” Physics, 2015.
[41] D. Feng, W. Qian, H. Liang, C.-C. Kung, J. Fong, B. Luff, and M. Asghari, “Fabrication insensitive echelle grating in silicon-on-insulator platform,” IEEE Photonics Technology Letters, vol. 23, no. 5, pp. 284–286, 2011.
[42] C. Sciancalepore, R. J. Lycett, J. A. Dallery, S. Pauliac, K. Hassan, J. Harduin, H. Duprez, U. Weidenmueller, D. F. G. Gallagher, S. Menezo, and B. B. Bakir, “Low-crosstalk fabrication-insensitive echelle grating demultiplexers on silicon-on-insulator,” IEEE Photonics Technology Letters, vol. 27, no. 5, pp. 494–497, 2015.
[43] J.-m. Liu, “Photonic Devices”, New York: Cambridge University Press, 2005.
[44] E. F. Schibert, “Light-emitting diodes, 2nd ed”., New York: Cambridge University Press, 2006.
[45] J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets and D. V. Thourhout, "Planar Concave Grating Demultiplexer with High Reflective Bragg Reflector Facets," IEEE Photonics Technology Letters, vol. 20, no. 4, pp. 309-311, 2008.
[46] S. Sridaran and S. A. Bhave, "Nanophotonic devices on thin buried oxide silicon-on-insulator substrates," Optics Express, vol. 18, no. 4, pp. 3850-3857, 2010.
[47] T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Applied Physics Letters, vol. 85, no. 16, pp. 3346-3347, 2004.
[48] P. Dumon,W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricacated with deep UV lithography,” IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
[49] J. Song, L.-C. Chen and B.-J. Li, "A fast simulation method of silicon nanophotonic Echelle gratings and its applications in the design of on-chip spectrometers," Progress in Electromagnetics Research, vol. 141, pp. 369-382, 2013.
[50] S. R. Rassmussen, M. R. Larsen, and S. E. Rasmussen, "Covalent immobilization of DNA onto polystyrene microwells : The molecules are only bound at the 5’ end," Analytical Biochemistry, vol.198, pp. 138-142, 1991.
[51] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
[52] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
[53] P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Optics Express, vol. 14, pp.7063-7072, 2006.
[54] K. Q. Le and P. Bienstman, “Enhanced Sensitivity of Silicon-On-Insulator Surface Plasmon Interferometer With Additional Silicon Layer,” IEEE Photonics Journal, vol. 3, no. 3, 2011.
[55] J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics Journal, vol. 4, no. 2, pp.317-326, 2012.
[56] J. Song, L. C. Chen, and B. J. Li, “Super-sensitive optical biosensor with a spectrometer on a chip,” Biotechnology & Biotechnological Equipment, vol. 27(4), pp. 4040-4043, 2013.
[57] J. Song, B. J. Li, L. C. Chen, and X. Li, “Ultrasensitive refractive index sensor based on the resonant scattering effect between double air circular-holes on silicon waveguides,” Optics Express, vol. 21, no. 23, pp. 27796-27801, 2013.
[58] J. Song, L. C. Chen, and B. J. Li, “A fast simulation method of silicon nanophotonics Echelle gratings and its applications in the design of on-chip spectrometers,” Progress In Electromagnetics Research, vol. 141, pp. 369-382, 2013.
[59] A. Yariv and P. Yeh, “Photonics: optical electronics in modern communications,” Sixth Edition, Oxford University Press, Inc., 2007.
[60] F. Gires and P. Tournois, "Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence," C. R. Acad. Sci. 258, group 5, pp. 6112–6115, 1964.
[61] L. Fabry and A. Perot, "A multipass interferometer," Annales de Chimie et de Physique, vol.16, no. 115, p. 115, 1899.
[62] A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, "Ultra-compact microdisk resonator filters on SOI substrate," Optics Express, vol. 14, no. 26, pp. 12814-12821, 2006.
[63] F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Optics Express, vol. 14, no. 9, pp. 3872-3886, 2006.
[64] C. Li, L. Zhou, S. Zheng, and A. W. Poon, "Silicon polygonal microdisk resonators," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1438-1449, 2006.
[65] K. Kieu and M. Mansuripur, "Fiber laser using a microsphere resonator as a feedback element," Optics Letters, vol. 32, no. 3, pp. 244-246, 2007.
[66] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. DelÔge, S. Janz, P. Cheben, J. H. Schmid and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Optics Express, vol. 15, no. 6, pp. 3149-3155, 2007.
[67] D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, "Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering," Integrated Optoelectronic Devices, vol. 6477, pp. 64770D-64770D-11, 2007.
[68] Shih-Hsiang Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, vol. 27, no. 5, pp. 941-947, 2010.
[69] Data storage institute, “SERC nanofabrication, processing and characterization (SnFPC) facility,” A-STAR, p. 15, 2013.
[70] V. Genova, “Cornell nanoscale facility dry etch capabilities,” Cornell University, pp. 2-16, 2016.
[71] C. Livermore, “Microfabrication for MEMS: Part III,” Massachusetts Institute of Technology, (MIT), p. 19, 2007.
[72] S. Panda , R. Ranade , and G. Mathad, “Etching of High Aspect Ratio Silicon Trenches,” Journal of The Electrochemical Society, pp. 612-616, 2003.
[73] S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Optics Communications, pp. 2141-2144, 2011.
[74] 龍柏華, 何孝恆, “乾式蝕刻製程暨機台原理簡介” 光電科技工業協進會, p. 39, 2004.
[75] J. M. Lane, F. P. Klemens, K. H. A. Bogart, M. V. Malyshev, and J. T. C. Lee, “'Feature evolution during plasma etching II Polycrystalline silicon etching", Journal of Vaccum Science & Technology A 18(1), pp 188-196, 2000.
[76] J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and K. Kostuk, “Measurement of waveguide birefringence using ring resonator,” IEEE of Photonics Technology Letters, vol. 16, no. 4, pp. 1134-1136, 2004.

QR CODE