簡易檢索 / 詳目顯示

研究生: 劉胤成
Yin-cheng Liu
論文名稱: 新型具有Benzo[c]cinnoline雜環結構聚并咪唑的合成及在高溫型質子交換膜燃料電池之應用
Synthesis and Characterization of Novel Polybenzimidazoles Containing Benzo[c]cinnoline Heterocyclic Ring and Applications on High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 王英靖
none
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 質子交換膜燃料電池
外文關鍵詞: High Temperature Proton Exchange Membrane
相關次數: 點閱:313下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用骨架上具有含氮雜環的3,8-benzo[c]cinnoline dicarboxylic acid(4)二酸單體,將其與聯苯四胺(3,3’-diaminobenzidine)在聚磷酸(PPA)中進行高溫關環聚合反應,合成新型聚并咪唑([c]-PBI),並利用PPA process在玻璃板上直接加工成膜,除此,並利用benzo[c]cinnoline二酸單體與對-苯二甲酸(terephthalic acid)二酸單體,依不同的比例混合,與聯苯四胺(3,3’-diaminobenzidine)合成新型聚并咪唑,分別為80[c]20p-PBI、60[c]40p-PBI、40[c]60p-PBI、20[c]80p-PBI。
[c]-PBI系列高分子固有黏度(inherent viscosity,0.2 g/dL,MSA,30℃)為1.04~2.20。熱裂解溫度T5%與T10%分別為311~355 ℃和460~575 ℃。在800 ℃之char yield在74~77 %。[c]-PBI系列高分子利用PPA process製備的膜量測之ADL為23.66~34.17,在160 ℃時質子交換率為0.1211~0.2814 S/cm。而最後進行燃料電池測試時,開路電壓可測得0.59~0.76 V,最大電功率為327~669 mW/cm2。這一系列的數值證實[c]-PBI系列新型高分子可應用於高溫質子交換膜燃料電池。


The research is about combing 3,8-benzo[c]cinnoline dicarboxylic acid(4) containing nitrogen heterocyclic ring and 3,3’-diaminobenzidine into PPA under high- temperature condensation reaction to synthesize novel polybenzimidazole ([c]-PBI) and then form membrane through PPA process on the glass. It’s also about using 3,3’-diaminobenzidine and the mixture of benzo[c]cinnoline diacid and terephthalic acid to synthesize polyimidazole, such as 80[c]20p-PBI, 60[c]40p-PBI, 40[c]60p-PBI, 20[c]80p-PBI.
The inherent viscosity(0.2 g/dL,MSA,30 ℃) of [c]-PBI series range from 1.04 to 2.20. The temperatures of 5% weight loss (T5% ) ranges from 311 to 355 ℃. The temperatures of 10% weight loss (T10% ) ranges from 460 to 575 ℃. The char yield
at 800 ℃range from 74~77 %. The ADL of [c]-PBI series range from 23.66 to 34.17 and proton conductivity at 160 ℃ range from 0.1211 to 0.2814 S/cm. During the fuel cell test, the open circuit voltages range from 0.59 to 0.76 and power density ranges from 327 to 669 mW/cm2. The data prove that the [c]-PBI series can be applied to high temperature proton exchange membrane fuel cell.

摘要 I 目錄 III Scheme 索引 VII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 2 1.3 Nafion的簡介 4 1.4 文獻回顧 7 1.5 研究動機 12 第二章 實驗部分 13 2.1 實驗藥品 13 2.2 實驗儀器 15 2.3 單體合成 16 銅粉活化29 16 4,4’-Dibromo-2,2’-dinitrobiphenyl (1) 30 16 3,8-Dibromobenzo[c]cinnoline (2) 16 3,8-Dicyanobenzo[c]cinnoline (3) 17 3,8-Benzo[c]cinnoline dicarboxylic acid (4) 17 2.4 高分子製備流程 19 2.5 質子交換膜的製備 20 第三章 結果與討論 21 3.1 單體製備 21 3.2 PBI合成 34 3.3 PBI分子量與溶解度 37 3.4 PBI熱學性質 39 3.5 PBI的磷酸摻雜能力 42 3.6 PBI的機械性質 43 3.7 PBI的質子傳導率 44 3.8 PBI之全電池特性 46 第四章 結論 49 參考文獻 50

1. Dupuis, A.-C. Prog. Mater. Sci. 2011, 56, (3), 289-327.
2. 黃振江. 燃料電池(修訂版) 2005.
3. Asensio, J. A.; Sanchez, E. M.; Gomez-Romero, P. Chem. Soc. Rev. 2010, 39, (8), 3210-3239.
4. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mat. 2003, 15, (26), 4896-4915.
5. Hu, Z.; Yin, Y.; Kita, H.; Okamoto, K. i.; Suto, Y.; Wang, H.; Kawasato, H. Polymer 2007, 48, (7), 1962-1971.
6. Rodgers, M.; Yang, Y.; Holdcroft, S. Eur. Polym. J. 2006, 42, (5), 1075-1085.
7. Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.; Watanabe, M. J. Am. Chem. Soc. 2006, 128, (5), 1762-1769.
8. Guo, X.; Fang, J.; Watari, T.; Tanaka, K.; Kita, H.; Okamoto, K. I. Macromolecules 2002, 35, (17), 6707-6713.
9. Genies, C.; Mercier, R.; Sillion, B.; Cornet, N.; Gebel, G.; Pineri, M. Polymer 2001, 42, (2), 359-373.
10. Zhang, Y.; Litf, M.; Savinell, R. F.; Wainright, J. S. Am. Chem. Soc., Div. Polym. Chem. 1999, 40, (2), 480-481.
11. Jouanneau, J.; Mercier, R.; Gonon, L.; Gebel, G. Macromolecules 2007, 40, (4), 983-990.
12. Glipa, X.; El Haddad, M.; Jones, D. J.; Roziere, J. Solid State Ion. 1997, 97, (1-4), 323-331.
13. Vogel, H.; Marvel, C. S. J. Polym. Sci. 1961, 50, (154), 511-539.
14. Iwakura, Y.; Uno, K.; Imai, Y. J. Polym. Sci. Pol. Chem. 1964, 2, (6), 2605-2615.
15. Yoda, N.; Kurihara, M. J. Polym. Sci. Macromol. Rev. 1971, 5, (1), 109-193.
16. Uno, K.; Niume, K.; Iwata, Y.; Toda, F.; Iwakura, Y. J. Polym. Sci. Pol. Chem. 1977, 15, (6), 1309-1318.
17. Serad, G. A. J. Polym. Sci. Pol. Chem. 1996, 34, (7), 1123-1124.
18. Ueda, M.; Sato, M.; Mochizuki, A. Macromolecules 1985, 18, (12), 2723-2726.
19. Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M. J. Electrochem. Soc. 1995, 142, (7), L121-L123.
20. Schechter, A.; Savinell, R. F. Solid State Ion. 2002, 147, (1-2), 181-187.
21. Hughes, C. E.; Haufe, S.; Angerstein, B.; Kalim, R.; Mahr, U.; Reiche, A.; Baldus, M. J. Phys. Chem. B 2004, 108, (36), 13626-13631.
22. Bouchet, R.; Siebert, E. Solid State Ion. 1999, 118, (3-4), 287-299.
23. Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. J. Electrochem. Soc. 2004, 151, (1), A8-A16.
24. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, (5), 449-477.
25. Kim, T.-H.; Kim, S.-K.; Lim, T.-W.; Lee, J.-C. J. Membr. Sci. 2008, 323, (2), 362-370.
26. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E. W.; Rogers, D.; Apple, T.; Benicewicz, B. C. Chem. Mat. 2005, 17, (21), 5328-5333.
27. Xiao, L.; Zhang, H.; Jana, T.; Scanlon, E.; Chen, R.; Choe, E.-W.; Ramanathan, L.S.; Yu, S.; Benicewicz, B.C. J. Membr. Sci.2004,
28. Yang, J.; Xu, Y.; Zhou, L.; Che, Q.; He, R.; Li, Q. J. Membr. Sci.2013,446, 318-325
29. Vogel, In VOGEL’s TEXTBOOK of Pratical Organic Chemistry, 426.
30. Sonntag, M.; Strohriegl, P. Chem. Mater. 2004, 16, 4736.
31. Bacon, R. G. R.; Pande, S. G. J. Chem. Soc. C 1970, 1967.
32. Corbett, J. F.; Holt, P. F. J. Chem. Soc. (Resumed) 1961, 5029.
33. Patrick, D. A.; Boykin, D. W.; Wilson, W. D.; Tanious, F. A.; Spychala, J.; Bender, B. C.; Hall, J. E.; Dykstra, C. C.; Ohemeng, K. A.; Tidwell, R. R. Eur. J. Med. Chem. 1997, 32, 781.
34. Joshua, C. P.; Pillai, V. N. R. Indian J. Chem. 1974, 12, 60.
35. Ross, S. D.; Kuntz, I. J. Am. Chem. Soc. 1952, 74, 1297.
36. Corbett, J. F.; Holt, P. F. J. Chem. Soc. (Resumed) 1961, 5029.
37. Bjorsvik, H.-R.; Gonzalez, R. R.; Liguori, L. J. Org. Chem. 2004, 69, 7720.
38. Weissman, S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70, 1508.
39. (a)Kentaro, T. O.; Yasumasa, S.; Atsuyoshi, O.; Shinzaburo, O.; Naomi, H. Bull. Chem. Soc. Jpn. 1976, 49, 3177.(b)Takagi, K.; Sakakibara, Y.; Ohno, A. Bull. Chem. Soc. Jpn. 1975, 48, 3298.(c) Schareina, T.; Zapf, A.; Beller, M. J. Organomet. Chem. 2004, 689, 4576.
40. (a)Mowry, D. T. Chem. Rev. 1948, 42, 189.(b) Friedman, L.; Shechter, H. J. Org. Chem. 1961, 26, 2522.
41. Takagi, K.; Okamoto, T. Chem. Lett. 1973, 2, 471.
42. Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 2003, 3513.
43. Schareina, T.; Zapf, A.; Magerlein, W.; Muller, N.; Beller, M. Tetrahedron Lett. 2007, 48, 1087.
44. Joshua, C. P.; Pillai, V. N. R. Indian J. Chem. 1974, 12, 60.
45. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L.S.; Choe, E.W.; Rogers, D.; Apple, T.; Benicewicz, B.C. Chem. Mater. 2005, 17, 5328 - 5333

無法下載圖示 全文公開日期 2019/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE