簡易檢索 / 詳目顯示

研究生: 吳翊康
Yi-Kang Wu
論文名稱: 化學迴路燃燒技術應用於處理高含水量 溶劑之研究
Treatment of High Water-Content Solvents via Chemical Looping Combustion Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 141
中文關鍵詞: 化學迴路燃燒程序交聯式流體化床載氧體有機溶劑廢液
外文關鍵詞: chemical-looping combustion process, interconnected fluidized bed, oxygen carrier, high-water-content organic waste
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴路燃燒系統具高效燃燒與分離二氧化碳的功能,其反應系統設計、載氧體流體化狀態及固氣接觸時間,均會影響反應效率。本研究以澳洲和巴西鐵礦為載氧體,以實場廢液異丙醇(IPA)與蝕刻後消除液(EKC)為燃料,於1kWth和100kWth交聯式流體化床進行化學迴路燃燒程序。藉由調整燃料反應器、空氣反應器與密封迴路的氣體流量,來改變載氧體流體化行為與其在系統內分佈,在不同的溫度下進行化學迴路燃燒反應,量測系統內壓力分佈,並以上升管的壓力差估算固體循環速率,並分析燃燒後尾氣的組成。此系統中燃料反應器與封閉迴路均為鼓泡床形式,空氣反應器為快速流體化床,載氧體在兩者間穩定運行可達到較高CO2選擇率和純度。
實驗結果顯示,在1kWth交聯式流體化床系統中,空氣流量為 5 L/min與封閉迴路氮氣流量為 3.5 L/min時,燃料反應器以液體流量 1 mL/min搭配氮氣流量4 L/min,以及實場廢液4 mL/min搭配氮氣流量1L/min為最佳參數,CO2 選擇率與純度可高於70%。在100kWth反應系統中空氣流量為 80 L/min與封閉迴路氮氣流量為 40 L/min時,燃料反應器分以液體流量 23 mL/min搭配氮氣流量50 mL/min為最佳參數,此時,出口氣體組成以甲烷濃度最高。操作程序的關鍵點為液體汽化率,若燃料經預熱器氣化程度愈高,其可使載氧體流體化越穩定,廢液裂解率可達100%且CO2 選擇率可高於70%。在液體進料量過多時,供氧量不足時,系統會產生積碳行為,此時整體系統可視為裂解爐,產生甲烷與氫氣比例可達60%以上,但仍可維持穩定流體化運行。載氧體的低磨耗性質顯示天然鐵礦適合運用在交聯式流體化床,壽命長達1000小時以上,顯示此載氧體與本系統具有商轉價值的潛力所在。


The chemical-looping combustion (CLC) is a novel combustion process with the high combustion efficiency and direct separation of carbon dioxide during combustion reaction. The reaction rate is affected by the design of the reaction system, the degree of fluidization of oxygen carrier, and the contact time between oxygen carrier and fuel gas significantly. In this study, two kinds of high-water-content organic waste, IPA and EKC, were selected as the fuel for chemical-looping combustion, which was carried out in the 1kWth and 100kWth interconnected fluidized bed with two kinds of oxygen carriers, Australian and Brazilian iron ore, respectively. The behavior of fluidization of the oxygen carrier and the distribution of the oxygen carrier in fuel and air reactors were affected by the gas flow rates of the fuel reactor, air reactor, and the loop seal. The pressure drop of air reactor was measured and applied to estimate the solids circulation rate. The composition of the exhaust gas for the chemical-looping combustion process was measured to determine the combustion efficiency and fuel conversion under different temperatures. In this system, the fuel reactor and loop seal were in the form of bubbling bed, and the air reactor was a fast fluidized bed. The oxygen carriers were transported stably between two reactors to achieve high CO2 selectivity and purity.
In 1kWth interconnected fluidized bed, the experimental results showed that the optimal operation parameters were obtained at 5 L/min of air to AR ,3.5 L/min of nitrogen to LS and 4L/min of nitrogen with 1mL/min of solvent to FR. The maximum solvent feeding rate was 4 mL/min with 1L/min of nitrogen as carrier gas. It was achieved with over 70% of CO2 selectivity and purity.
In 100kWth interconnected fluidized bed, the experimental results indicated that the optimal operation parameters were obtained at 80 L/min of air to AR, 40 L/min of nitrogen to LS, and 50 L/min of nitrogen with 23 mL/min of solvent to FR. The methane was the major product of exhaust as feeding 160 ml/min of solvent to FR. The vaporization rate of the solvent was the key step in this combustion process. The more complete vaporization of liquid fuel through the preheating device is, the more stable and smoother the degree of fluidization is.
In conclusion, the complete vaporization of solvent was achieved with over 70% of CO2 selectivity. As the feeding rate of liquid fuel was too large, the oxygen-supply rate by oxygen carriers was insufficient, resulting in the generation of coke. The entire system thus played a role as thermal cracking system, and the molar fraction of methane and hydrogen was higher than 60%. The system could still be kept at a stable fluidization condition. The analysis results of physic characteristics for oxygen carriers indicated that the iron ore was suitable material for interconnected fluidized beds with a lifetime over 1000 h. The whole results showed the practicality of the chemical-looping combustion process for treatment of high-water-content organic waste.

摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 燃燒程序 3 1.3 研究動機 6 第二章 文獻回顧 7 2.1 化學迴路燃燒程序 7 2.2 載氧體的選擇與性質 10 2.3流體化現象 17 2.4 流體終端速度 21 2.5 固體循環率 23 2.6氣態燃料應用於化學迴路燃燒 24 2.7固態燃料應用於化學迴路燃燒 28 2.8液態燃料應用於化學迴路燃燒 32 第三章 研究方法 37 3.1 實驗規劃 37 3.2 實驗藥品 38 3.3 實驗儀器 39 3.4 半套式流體化床 43 3.5 1kWth交聯式流體化床 44 3.6 100kWth交聯式流體化床 47 第四章 結果與討論 50 4.1 天然鐵礦物性分析 50 4.1.1 載氧體最大攜氧量測試 52 4.1.2 晶相結構與表面結構分析 54 4.2 有機溶劑物性分析 56 4.3 鐵基載氧體的反應機制 59 4.4半套式流體化床系統 61 4.4.1 IPA水溶液測試結果 62 4.4.2實場IPA廢液測試結果 64 4.4.3實場EKC廢液測試結果 67 4.5 交聯式流體化床系統 70 4.5.1 各反應器氣流量設定與穩定性操作 71 4.5.2 IPA水溶液測試結果 75 4.5.3 實廠IPA廢液測試結果 88 4.5.4 實廠EKC廢液測試結果 99 4.6 100kWth交聯式流體化床系統 113 4.6.1 實廠IPA廢液測試結果 115 4.6.2 實廠EKC廢液測試結果 122 4.7 交聯式流體化床綜合討論 127 4.7.1 高溫爐體功率 127 4.7.2 反應器設計結構 129 第五章 結論與未來展望 133 5.1 結論 133 5.2 未來展望 135 第六章 參考文獻 137

1. Herzog, H., B. Eliasson, and O. Kaarstad, Capturing greenhouse gases. Scientific American, 2000. 282(2): p. 72-79.
2. Lopez-Solis, R. and J.-L. François, The breed and burn nuclear reactor: A chronological, conceptual, and technological review. International Journal of Energy Research, 2018. 42(3): p. 953-965.
3. Wang, M., Lawal, A, Stephenson, P.Sidders,. and J.Ramshaw, C, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design, 2011. 89(9): p. 1609-1624.
4. Baker, R.W., Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002. 41(6): p. 1393-1411.
5. Figueroa, J.D., Fout, Timothy,Plasynski, Sean,McIlvried, Howard and Srivastava, Rameshwar D., Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2008. 2(1): p. 9-20.
6. Laboratory, N.E.T., DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap. 2010.
7. Chiu, P.C. and Y. Ku, Chemical Looping Process - A Novel Technology for Inherent CO2 Capture. Aerosol and Air Quality Research, 2012. 12(6): p. 1421-1432.
8. Richter, H.J. and K.F. Knoche, Reversibility of Combustion Processes. 1983. 235: p. 71-85.
9. Ishida, M., D. Zheng, and T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy, 1987: p. 147-154.
10. Cho, P., T. Mattisson, and A. Lyngfelt, Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel, 2004. 83(9): p. 1215-1225.
11. Fan, L.S., Chemical Looping Systems for Fossil Energy Conversions. Wiley, 2010.
12. Gu, H., Shen, Laihong, Zhong, Zhaoping, Niu, Xin,Ge, Huijun,Zhou, Yufei and Xiao, Shen., Potassium-Modified Iron Ore as Oxygen Carrier for Coal Chemical Looping Combustion: Continuous Test in 1 kW Reactor. Industrial & Engineering Chemistry Research, 2014. 53(33): p. 13006-13015.
13. 朱敬平, 化學迴路燃燒技術發展概況簡介. 中興工程季刊第110期, 2011: p. 63-72.
14. Hossain, M.M. and H.I. de Lasa, Chemical-looping combustion for inherent separations—a review. Chemical Engineering Science, 2008. 63(18): p. 4433-4451.
15. Adanez, J., Abad, Alberto,Garcia-Labiano, Francisco,Gayan, Pilar and de Diego, Luis F., Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science, 2012. 38(2): p. 215-282.
16. Abad, A., Adánez, Juan ,García-Labiano, Francisco ,de Diego, Luis F. ,Gayán, Pilar and Celaya,Javier, Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, 2007. 62(1-2): p. 533-549.
17. Jerndal, E., T. Mattisson, and A. Lyngfelt, Thermal Analysis of Chemical-Looping Combustion. Chemical Engineering Research and Design, 2006. 84(9): p. 795-806.
18. Nasr, S. and K.P. Plucknett, Kinetics of Iron Ore Reduction by Methane for Chemical Looping Combustion. Energy & Fuels, 2014. 28(2): p. 1387-1395.
19. Adanez, J., de Diego, L. F. Garcia-Labiano, F. Gayan, P. Abad, A. and Palacios, J. M., Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels, 2004. 18(2): p. 371-377.
20. Cabello, A., Gayán, P. García-Labiano, F. de Diego, L. F. Abad, A. and Adánez, J., On the attrition evaluation of oxygen carriers in Chemical Looping Combustion. Fuel Processing Technology, 2016. 148: p. 188-197.
21. Bartels, M., Lin, Weigang ,Nijenhuis, John ,Kapteijn, Freek and van Ommen, J. Ruud, Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science, 2008. 34(5): p. 633-666.
22. Jozwiak, W.K., Kaczmarek, E.,Maniecki, T. P.,Ignaczak, W. and Maniukiewicz, W., Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General, 2007. 326(1): p. 17-27.
23. Lin, H.-Y., Y.-W. Chen, and C. Li, The mechanism of reduction of iron oxide by hydrogen. Thermochimica Acta, 2003. 400(1-2): p. 61-67.
24. Pineau, A., N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2. Thermochimica Acta, 2006. 447(1): p. 89-100.
25. Geldart, D., Types of Gas Fhidization. Powder technology, 1972. 7: p. 285-292.
26. Geldart, D., The effect of particle size and size distribution on the behaviour of gas-fluidised beds, Powder Technology. Powder Technology, 1972(6): p. 201-215.
27. D. Kunii and O. Levenspiel, Fluidization Engineering. H Brenner, 1991.
28. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology, 1989. 58: p. 63-70.
29. Lyngfelt, A. and H. Thunman, Construction and 100 h of operational experience of a 10-KW chemical-looping combustor. Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, 2005. 1: p. 625-645.
30. Penthor, S., Zerobin, F., Mayer, K., Proll, T. and Hotbauer, H., Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels. Applied Energy, 2015. 145: p. 52-59.
31. Hallberg, P., Hanning, Malin, Rydén, Magnus, Mattisson, Tobiasand Lyngfelt, Anders, Investigation of a calcium manganite as oxygen carrier during 99 h of operation of chemical-looping combustion in a 10 kW th reactor unit. International Journal of Greenhouse Gas Control, 2016. 53: p. 222-229.
32. Abad, A., Adánez, Juan, García-Labiano, Francisco, de Diego, Luis F and Gayán, Pilar,Modeling of the chemical-looping combustion of methane using a Cu-based oxygen carrier. Energy Procedia, 2009. 1(1): p. 391-398.
33. Linderholm, C., Abad, Alberto, Mattisson, Tobias and Lyngfelt, Anders, 160h of chemical-looping combustion in a 10kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2008. 2(4): p. 520-530.
34. Linderholm, C., Schmitz, Matthias, Knutsson, Pavletaand Lyngfelt, Anders., Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier. Fuel, 2016. 166: p. 533-542.
35. Ohlemüller, P., Gayán, P., García-Labiano, F., de Diego, L. F., Abad, A.and Adánez, J., Chemical-Looping Combustion of Hard Coal Autothermal Operation of a 1 MWth Pilot Plant. Journal of Energy Resources Technology, 2016. 138: p. 042203-7.
36. Song, T., Wu, Jiahua, Zhang, Haifeng and Shen, Lai hong, Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal. International Journal of Greenhouse Gas Control, 2012. 11: p. 326-336.
37. Niu, X., Shen, Laihong, Gu, Haiming, Jiang, Shouxi and Xiao, Jun, Characteristics of hematite and fly ash during chemical looping combustion of sewage sludge. Chemical Engineering Journal, 2015. 268: p. 236-244.
38. Serrano, A., García-Labiano, F., de Diego, L. F., Gayán, P.,Abad, A. and Adánez, J.., Chemical Looping Systems for Fossil Energy Conversions. Fuel Processing Technology, 2017. 160: p. 47-54.
39. Chiu, P.C., Ku, Y. Wu, H. C.Kuo, Y. L.and Tseng, Y. H., Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion. Energy & Fuels, 2014. 28(1): p. 657-665.
40. Rydén, M., Moldenhauer, Patrick Mattisson, Tobias Lyngfelt, Anders Younes, Mourad Niass, Tidjani Fadhel, Bandar and Ballaguet, Jean-Pierre , Chemical-Looping Combustion with Liquid Fuels. Energy Procedia, 2013. 37: p. 654-661.
41. Kulkarni, D. and I.E. Wachs, Isopropanol oxidation by pure metal oxide catalysts number of active surface sites and turnover frequencies. Applied Catalysis 2002. 237: p. 121–137.

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE