簡易檢索 / 詳目顯示

研究生: 林彥妘
Yan-Yun Lin
論文名稱: 波束可重置之串列式槽孔陣列天線
Development of Beam Reconfigurable Antenna Based on Serially-Fed Slot Array
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
廖昌倫
Chang-Lun Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 波束掃描相位陣列射頻二極體行波天線槽孔天線串列式饋入
外文關鍵詞: reconfi, gurable antennas, electronic beam steering, series-fed arrays, traveling-wave antennas, PIN diodes
相關次數: 點閱:197下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一具新穎性且低成本的電控式波束可重置的陣列天線架構,可配合應用情境變化而動態調整涵蓋範圍並具抗干擾特性。利用行波天線的設計方式,藉傳輸線本身具有的相位特性,毋須改變傳輸線結構,只需調整單元天線在傳輸結構的位置,便能得到所需的相位差,再搭配射頻二極體開關設計,可以電控方式開啟或關閉單元天線,達到波束切換的功能。而行波天線本身具有頻率掃描的特性,不但在特定頻率下的有主波束切換功能,亦可藉頻率變動提供對應的細部場型微調,增加應用的彈性。此外本研究也針對行波陣列天線的末端結構,提出一有效利用能量的設計方式,提高陣列天線的輻射效率。
以此概念為基礎,本論文分成三個部分,第一部分描述如何實現波束可切換的串列式槽孔陣列天線架構,並以實作方式驗證之;第二部分提出一款可應用於室內小型基地台的雙頻雙極化波束切換陣列天線,並討論不同的饋入結構末端對陣列天線的性能影響,以及此架構可能具有的極化控制方式;而第三部分則為先行研究,提出一款具有豐富場型多樣性的波束切換陣列天線設計,屬於智慧型天線的範疇,在不同的單元天線排列間距下,控制個別單元天線的開關狀態,搭配波束合成計算方法作為核心,可快速建立操作模式與對應場型的資料庫,值得進一步研究。


A novel electronically reconfigurable beam switching antenna array type is proposed in this work. With the serial feed configuration, the specific length of transmission line can provide the corresponding phase difference at the ends. Locations of antenna elements on the transmission line can be designed to excite desired phase differences. With elements adjustable via RF switches, the main beam direction can be reconfigured with different combinations of switches.
Based on aforementioned concept, the thesis is divided into three sections. The first part describes how to implement the array architecture, and the method that verify its performance. The second part is a dual band/dual polarization reconfigurable array design for small cells. The performances with the different feeding and terminating schemes, as well as polarization control methods are discussed. The third part is a pilot study, a novel array design to facilitate various radiation patterns is presented. With the efficient method to synthesize radiation patterns based on the antenna array theory, the corresponding excitation state of elements can be determined. A database is established to provide a beam or a null scanning feature with this array antenna.
A novel electronically reconfigurable beam switching antenna array type is proposed in this work. With the serial feed configuration, the specific length of transmission line can provide the corresponding phase difference at the ends. Locations of antenna elements on the transmission line can be designed to excite desired phase differences. With elements adjustable via RF switches, the main beam direction can be reconfigured with different combinations of switches.
Based on aforementioned concept, the thesis is divided into three sections. The first part describes how to implement the array architecture, and the method that verify its performance. The second part is a dual band/dual polarization reconfigurable array design for small cells. The performances with the different feeding and terminating schemes, as well as polarization control methods are discussed. The third part is a pilot study, a novel array design to facilitate various radiation patterns is presented. With the efficient method to synthesize radiation patterns based on the antenna array theory, the corresponding excitation state of elements can be determined. A database is established to provide a beam or a null scanning feature with this array antenna.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 章節概述 4 第二章 串列式波束可切換之槽孔陣列天線設計 5 2.1 前言 5 2.2 饋入架構與單元天線的選用考量 6 2.2.1 饋入架構 6 2.2.2 單元天線型式 7 2.2.3 單元天線的切換開關 10 2.3 單元天線參數分析 11 2.3.1 耦合區小槽孔的長度Lc 12 2.3.2 耦合槽孔天線與共面波導的距離S 14 2.3.3 開關位置Sw 14 2.4 串列式槽孔陣列天線設計 15 2.4.1 饋入結構末端 16 2.4.2 波束偏轉設計 18 2.5 模擬與量測結果比較 19 2.6 小結 25 第三章 雙頻雙極化電控式波束切換陣列天線設計 26 3.1 前言 26 3.2 雙頻陣列天線的排列方式 27 3.3 雙頻單元天線設計 29 3.4 雙頻雙極化陣列天線設計 32 3.4.1 以匹配電阻為終端 33 3.4.2 以雙頻天線為終端 54 3.5 極化控制方式 70 3.6 小結 72 第四章 智慧型多波束切換陣列天線 73 4.1 前言 73 4.2 串列式八槽孔天線組成之陣列與效能表現 74 4.3 波束合成計算方法 75 4.4 槽孔激發功率設計與分析 82 4.5 小結 85 第五章 結論 86 參考文獻 87 附錄一 90

[1] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering butler matrix for phased array system,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[2] E. Abdo-Sánchez, D. Palacios-Campos, C. Frías-Heras, F. Y. Ng-Molina, T. M. Martín-Guerrero, and C. Camacho-Peñalosaand, “Electronically steerable and fixed-beam frequency-tunable planar traveling-wave antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1298-1306, Apr. 2016.
[3] Y. Li, M. F. Iskander, Z. Zhang, and Z. Feng, “A new low cost leaky wave coplanar waveguide continuous transverse stub antenna array using metamaterial-based phase shifters for beam steering,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3511-3518, Jul. 2013.
[4] N. K. Host, C. -C. Chen, J. L. Volakis, and F. A. Miranda, “Low cost beam-steering approach for a series-fed array, ” Phased Array Systems & Technology, 2013 IEEE International Symposium on, Waltham, Massachusetts, 15-18 oct. 2013, pp. 293-300.
[5] H. Kawakami and T. Ohira, “Electrically steerable passive array radiator (ESPAR) antennas,” IEEE Antennas Propag. Mag., vol. 47, no. 2, pp. 43-50, Apr. 2005.
[6] Y. Yusuf, and X. Gong, ”A low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 81-84, Apr. 2008.
[7] J. Sor, C.-C. Chang, Y. Qian, and T. Itoh, ”A reconfigurable leaky-wave/patch microstrip aperture for phased-array applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 8, pp. 1877-1884, Aug. 2002.
[8] G. H. Huff, J. Feng, S. Zhang, and J. T. Bernhard, “A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna,” IEEE Microw. Compon. Lett., vol. 13, no. 2, pp. 57-59, Feb. 2003.
[9] D. F. Sievenpiper, “Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 236-247, Jan. 2005.
[10] B. B. Jones, F. Y. M. Chow, and A. W. Seeto, ”The synthesis of shaped patterns with series-fed microstrip patch arrays,” IEEE Trans. Antennas and Propag., Vol. AP-30, NO. 6, pp. 1206-1212, Nov. 1982.
[11] M. Ettorre, R. Sauleau, and L. Le Coq, “Multi-beam multi-layer leaky wave siw pillbox antenna for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1093–1100, Apr. 2011.
[12] C. A. Balanis, Modern Antenna Handbook, 1st ed, New Jersey, John Wiley & Sons, 2008.
[13] D. M. Pozar, Microwave Engineering, 4rd ed, New Jersey, John Wiley & Sons, 2005.
[14] R. Garg, I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, 3rd ed, Boston, Artech House, 2013.
[15] S. Sierra-Garcia, and J. J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propag., vol 47, no. 1, pp. 58-64, 1999.
[16] K.-H. Chen, S.-J. Wu, C.-H. Kang, C.-K. Chan, and J.-H. Tarng, “A frequency reconfigurable slot antenna using PIN diodes,” 2009 Asia Pacific Microwave Conference, Singapore, 7-10 Dec. 2009, pp. 1930-1933.
[17] Y. Li, Z. Zhang, C. Deng, Z. Feng, and M. F. Iskander, “2-D planar scalable dual-polarized series-fed slot antenna array using single substrate,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 2280-2283, Apr. 2014.
[18] S. Sugawa, K. Sakakibara, N. Kikuma, and H. Hirayama, “Low-sidelobe design of microstrip comb-line antennas using stub-integrated radiating elements in the millimeter-wave band,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4699-4709, Oct. 2012.
[19] 林天民, 串聯饋入式平面型天線之設計, 國立台北科技大學電腦與通訊研究所, 碩士論文, 民國95年
[20] J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd ed, New York, McGraw-Hill, 2003.
[21] Y. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 760-771, Feb. 2012.
[22] R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook, 1st ed, Boston, Artech House, 2000.

QR CODE