簡易檢索 / 詳目顯示

研究生: 鄭凱慈
Kai-Tzu Cheng
論文名稱: 以電泳法沈積Nafion於燃料電池觸媒層之研究
Investigation of electrophoresis deposition of Nafion ionomer on electrode layer of fuel cells
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 林智汶
none
陳文正
none
周澤川
none
李嘉平
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 118
中文關鍵詞: 燃料電池電泳沉積法
外文關鍵詞: electrophoresisi deposition
相關次數: 點閱:271下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重在以電泳沈積法將Nafion分子沈積於燃料電池用之觸媒層上,藉由增加觸媒層中反應發生的三相區大小,提高觸媒的利用率,進而達到減少觸媒使用率,降低成本的目的。於實驗中探討幾項影響電泳沈積之因素,如沈積時間、施加之電流大小以及溶液之親疏水性。發現在沈積時間30分鐘時,電池放電效率最好,在放電電壓為0.3V時之電流密度為453 mA/cm2,此組實驗中發現電泳沈積之時間對電荷轉移阻抗的降低比較有成效。在固定總電量下,而當施加電流為5毫安培時,會有最好的電池放電性能,在放電電壓為0.3V時之電流密序為520 mA/cm2。此外,藉由改變Nafion溶液中丙醇之含量來探討親疏水性對電泳沈積之影響時,在丙醇添加量為0.6mL時會有最好的電池放電性能,在放電電壓為0.3V時之電流密度為513 mA/cm2。最後,本實驗選用碳紙電極來探討不同之氣體擴散層材料對電泳沈積之影響,在組成甲醇燃料電池膜電極組後進行放電測試,發現效果不彰,原因可能是不同的結構造成Nafion分子穿透氣體電極,而且表面的觸媒粒子也溶液掉落,造成沈積效果不好,經過電泳沈積後之電池放電反應都不及未經電泳沈積之結果。在本研究探討之實驗條件中,除了氣體擴散層材料的探討外,經過電泳沈積後的電池放電效果都會比未經電泳沈積的實驗來的好。由此可知,電泳沈積法確實可以對電池效率的提昇有很大的幫助。


    The main target of this study is to deposit Nafion ionomer into the catalyst layer which is used in a fuel cell application by electrophoretic deposition. The triple phase zone where the oxidation reaction and reduction reaction occur can be increased efficiently. Hence, the utilization of catalyst can be improved a lot. It will be possible to lower the cost of fuel cell.
    Conditions involving duration time, applied current and the surface tension of ionomer solution were discussed in this study. By changing the duration time, we found that the best efficiency could be attained of 30 minutes. The largest current density of 453 mA/cm2 was obtained at 0.3V. From the AC-Impedance analysis, it’s was found that the duration time only change the charge transfer resistance in membrane electrode assemblies and had little effect on membrane resistance and interface resistance. In the other experiment, we changed the applied current, but the total charges were fixed by adjusting the duration time. We got the best performance by applying 5 mA for 60 minutes. The largest current density of 520 mA/cm2 was obtained at 0.3V. Furthermore, 1-Propanol was added into the Nafion solution to adjust its surface tension. The best performance was achieved at the addition of 0.6 mL 1-propanol. The largest current density of 513 mA/cm2 was obtained at 0.3V. In the end of this study, we used carbon paper to be the replace carbon cloth which was used in previous experiment. But the performance was not good. The reason might be the different structure of carbon paper from carbon clothe or the poor attachment of catalyst on carbon paper.
    Besides the final experiment, we got better performance by depositing the Nafion ionomer in catalyst layer. We can expect that the electrophoretic deposition method will be a potential technology for making the membrane electrode assemblies.

    第一章 序論 1.1 前言...................................................................................................1 1.2 燃料電池的發展簡介.......................................................................2 1.3 燃料電池的種類...............................................................................5 1.3.1 鹼性燃料電池(alkaline fuel cell, AFC) .....................................5 1.3.2 磷酸燃料電池(phosphoric acid fuel cell, PAFC)....................6 1.3.3 熔融碳酸鹽燃料電池(molten carbonate fuel cell, MCFC) ......................................................................................................6 1.3.4 固態氧化物燃料電池(solid oxide fuel cell, SOFC).................7 1.3.5 直接甲醇燃料電池(direct methanol fuel cell, DMFC)...........7 1.3.6 質子交換膜燃料電池(proton exchange membrane fuel cell) ......................................................................................................8 1.4 質子交換膜燃料電池之電化學原理...............................................8 1.5 質子交換膜燃料電池之結構與發展狀況.....................................11 1.5.1 質子交換膜................................................................................11 1.5.2 電極............................................................................................14 1.6 膜電極組內之反應機制.................................................................15 1.7 研究動機與目的.............................................................................21 1.8 研究架構.........................................................................................21 第二章 文獻回顧 2.1 現有膜電極組的製作方式.............................................................23 2.1.1 幾種常見的製備方式..................................................................24 2.1.1.1 傳統方法...............................................................................24 2.1.1.2 真空濺鍍沈積法...................................................................25 2.1.1.3 電化學還原法.......................................................................25 2.1.2 對傳統製備方法的改進..............................................................27 2.1.2.1 採用白金觸媒含量適中的Pt/C 催化劑.............................27 2.1.2.2 將白金層濺鍍於觸媒層表面...............................................28 2.1.2.3 觸媒層中Nafion的浸漬量的最適化....................................29 2.1.2.4 採用性能更好的質子交換膜...............................................32 2.2 電泳沈積法.....................................................................................33 2.2.1 電泳沉積之介紹........................................................................34 2.2.2 電泳沉積法之動力學................................................................36 2.2.3 電泳沈積於燃料電池之應用....................................................38 第三章 實驗藥品、設備、步驟與原理 3.1 實驗藥品.........................................................................................41 3.2 實驗設備與器材.............................................................................41 3.3 實驗步驟與方法.............................................................................42 3.3.1以不同之施加電流時間進行電泳沈積........................................46 3.3.2 添加不同含量之丙醇於Nafion溶液中進行電泳沈積............47 3.3.3 以不同之電流大小進行電泳沈積............................................47 3.3.4 以不同之氣體擴散層材料進行電泳沈積................................47 3.3.5 交換膜之前處理........................................................................48 3.3.6 膜電極組之製備........................................................................48 3.3.6.1 質子交換膜之膜電極組製備.................................................48 3.3.6.2 直接甲醇燃料電池之膜電極組製備.....................................49 3.4 實驗方法與原理.............................................................................49 3.4.1 電極表面分析............................................................................49 3.4.1.1 接觸角量測...........................................................................49 3.4.1.2 掃描式電子顯微鏡 (SEM)分析..........................................51 3.4.1.3 能量散射光譜儀(EDS)分析...............................................51 3.4.2 電化學性質之分析....................................................................52 3.4.2.1 AC-Impedance交流阻抗電化學特性測試.........................52 3.4.2.2 燃料電池放電特性測試.....................................................62 3.4.2.2.1 單電池組裝........................................................................62 3.4.2.2.2 放電測試系統組裝............................................................62 第四章 結果與討論 4.1 電泳裝置之改良.............................................................................65 4.2 影響電泳沈積之因素.....................................................................66 4.2.1 沈積時間對電泳沈積之影響....................................................66 4.2.2 電流大小對電泳沈積之影響....................................................74 4.2.3 Nafion溶液之親疏水性對電泳沈積之影響............................78 4.2.4 不同之氣體擴散層材料對電泳沈積之影響..............................84 4.3 電化學效能分析.............................................................................86 4.3.1 沉積時間對電池效能之影響....................................................86 4.3.2 電流大小對電池效能之影響....................................................91 4.3.3 Nafion溶液之親疏水性對電池效能之影響............................95 4.3.4 不同之氣體擴散層材料對電池效能之影響..............................99 4.4 交流阻抗分析.............................................................................102 4.4.1 不同之沈積時間的交流阻抗分析..........................................102 4.4.2 不同之施加電流的交流阻抗分析............................................105 第五章 綜合討論 5.1 影響電泳沈積之因素....................................................................111 5.1.1 沈積時間...................................................................................111 5.1.2 施加之電流大小.......................................................................111 5.1.3 Nafion溶液之親疏水性..........................................................112 5.1.4 氣體擴散層材料......................................................................113 5.2 未來方向.......................................................................................113 第六章 參考文獻

    1. 黃鎮江,燃料電池,全華科技圖書公司,台北 (2003)
    2. 吳滄琪,磺酸化高分子于燃料電池質子交換膜製備之應用,元智大學化工系(2003)
    3. 鄭耀宗,徐耀升,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989)
    4. 詹世弘,二十一世紀之星-燃料電池,燃料電池研討會,元智大學 (2000)
    5. 邱志豪,聚苯咪唑合成及薄膜性質,元智大學化工系 (2004)
    6. T. Schultz, et al ., “Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol〞, Chemical Engineering and Technology 24 (12), pp. 1223-1233 (2001)
    7. 曾育貞,改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究,台灣科技大學化工系(2005)
    8. 經濟部能源科技研究發展計畫報告
    9. Young Tai Kho, et al ., “Mass TransportPhenomens in Proton Exchange Membrane Fuel Cells Using O2/He,O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis〞, Journal of the Electrochemical Society 141 (8), pp. 2089-2096 (1994)
    10. 李軒誠,質子交換膜燃料電池研究—MEA的製程與應用,國立中山大學機械工程學系研究所 (2000)
    11. Ryan O’Hayre, et al ., “A Mathematical Model and Experimental Investigations for Fuel Cells” , Journal of The Electrochemical Society 152 (2) A439-A444 (2005)
    12. Ma Jianxin, et al ., PROGRESS IN CHEMISTRY 16(5), pp.804 (2004)
    13. Srinivasan S, et al ., “Advances In Solid Polymer Electrolyte Fuel Cell Technology With Low Platinum Loading Electrodes.” Journal of Power Sources 22 (3-4), pp. 359-375 (1987)
    14. E-TEK Inc. Gas diffusion electrodes and catalyst materials, http://www.Etek-inc.com
    15. Hirano S , et al ., ” High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes ”, Electrochimica Acta 42 (10), pp. 1587-1593 (1997)
    16. Taylor E J , et al ., “Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells ”, Journal of the Electrochemical Society 139 (5), pp. L45-L46 (1992)
    17. Ticianelli E A , et al ., “Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of the electrodes ”, Journal of Applied Electrochemistry 21 (7), pp. 597-605 (1991)
    18. Raistrick I D. US 4 876 115
    19. Srinivasan S, et al ., “High energy efficiency and high power density proton exchange membrane fuel cells. Electrode kinetics and mass transport ”, Journal of Power Sources 36 (3), pp. 299-320 (1991)
    20. Ticianelli E A , et al ., “Methods to advance technology of proton exchange membrane fuel cells ”, Journal of the Electrochemical Society 135 (9), pp. 2209-2214 (1988)
    21. Srinivasan S , et al ., ” Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes ”, Journal of Power Sources 29 (3-4), pp. 367-387 (1990)
    22. 程曉亮等, 電化學(Electrochemistry) , 5, pp. 218 ─223(1999)
    23. 唐倩等. 電化學(Electrochemistry) , 7, pp. 351 ─357(2001)
    24. Du X, et al, Phys. Chem. Chem. Phys. , 3, pp. 3175 ─3179(2001)
    25. 于景榮等, 電源技術(Chinese J . Power Sources) , 25 pp. 384 ─386 (2001)
    26. 劭志剛(Shao Z G) . 博士學位論文(Doctoral Dissertation) . 中科院大連化學物理研究所(Dalian Inst . Chem. Phys. , CAS) (2000)
    27. Ticianelli E A , et al ., “Localization Of Platinum In Low Catalyst Loading Electrodes To Attain High Power Densities In Spe Fuel Cells.”, Journal of electroanalytical chemistry and interfacial electrochemistry 251 (2), pp. 275-295 (1988)
    28. Hards GA , Rulph T R. US 5 501 915]
    29. Wakizoe M, et al ., “Analysis Of Proton Exchange Membrane Fuel Cell Performance With Alternate Membranes ”, Electrochemical Acta 40 (3), pp. 335-344 (1995)
    30. S. Slade, et al ., “Ionic Conductivity Of An Extruded Nafion 1100 Ew Series Of Membranes ”, Journal of the Electrochemical Society 149 (12), pp. A1556-A1564 (2002)
    31. H.C. Hamaker, et al ., ”Physical”, 4, pp. 1058-1064( 1937)
    32. J. Van Tassel, “ Electrophoretic Deposition And Sintering Of Thin/Thick PZT Films ”, Journal of the European Ceramic Society 19 (6-7), pp. 955-958 (1999)
    33. Hamaker HC, et al ., “Formation Of Deposition By Electrophoresis.”, Trans Farad. Soc. 36:279 83. (1940)
    34. Sarkar P, et al ., ”Synthesis And Microstructural Manipulation Of Ceramics By Electrophoretic Deposition.”, Journal of Materials Science 39 (3), pp. 819-823 (2004)
    35. Hiroshi Morikawa, et al ., “Preparation Of Membrane Electrode Assembly For Fuel Cell By Using Electrophoretic Deposition Process ”, Journal of the Electrochemical Society 151 (10), pp. A1733-A1737 (2004)
    36. Hansun Kim, et al ., “Development Of Novel Method For Preparation Of PEMFC Electrodes ”, Electrochemical and Solid-State Letters 7 (4), pp. A71-A74 (2004)
    37. Kiyoshi Kanamura, et al ., “Electrophoretic Fabrication Of Licoo2 Positive Electrodes For Rechargeable Lithium Batteries”, Journal of Power Sources 97-98, pp. 294-297 (2001)
    38. Hideyuki Negishi, et al ., “Electrophoretic Deposition Mechanism Of YSZ/N-Propanol Suspension”, Journal of the Electrochemical Society 152 (2), pp. J16-J22 (2005)
    39. Yahua Bao, et al ., “Constant Current Electrophoretic Infiltration Deposition Of Fiber-Reinforced Ceramic Composites”, J. Am. Ceram. Soc., 90 (4) 1063–1070 (2007)
    40. Kirsten Moritz, et al ., “Investigation Of The Electrophoretic Deposition Behaviourof Non-Aqueous Ceramic Suspensions”, J Mater Sci 41, pp. 8047–8058 (2006)
    41. K.C. Baker, et al ., Acta Biomaterialia 3(3), pp. 391-401 (2007)
    42. Jinson Shi, et al ., Journal of Power Sorce 164, pp. 284-286 (2007)
    43. Guangyu Lin, et al ., Journal of the electrochemical society, 151(12) A1999-12006 (2004)
    44. Guangyu Lin, et al ., Journal of Power Sorce, 152(10)A1942-A1984 (2005)

    QR CODE