簡易檢索 / 詳目顯示

研究生: 劉康仕
Kang-Shi Liu
論文名稱: 48 V-12 V 1MHz LLC諧振式轉換器
48 V-12 V 1 MHz LLC Resonant Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉宇晨
Yu-Chen Liu
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 153
中文關鍵詞: 軟啟動最佳化軌跡控制分數圈變壓器氮化鎵
外文關鍵詞: Quarter-Turn Transformer, Soft Start-Up, Simplified Optimal Trajectory Control, Gallium Nitride
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出應用於數據中心48 V電壓調節模組的48 V-12 V隔離式直流-直流轉換器。本電路架構採用能夠在全負載範圍達到一次側開關零電壓切換與二次側開關零電流切換的全橋LLC串聯諧振式轉換器,藉由將開關的操作頻率固定在諧振點做為直流變壓器(DC Transformer, DCX)。考量降低啟動時的湧浪電流(Inrush Current),以設定上、下限電流的方式使用最佳化軌跡控制法搭配狀態平面圖對軟啟動進行分析,達到保護電路以及快速建立輸出電壓等目標。而在1 MHz的開關切換頻率下,開關切換損耗大幅上升,因此採用寬能隙元件氮化鎵降低功率開關的損耗,針對變壓器一、二次側皆為低電壓大電流的電路規格下,本文採用分數圈平板變壓器結構,在同樣維持4:1電壓轉換比下,一次側、二次側繞組的圈數更少,擁有更低的直流銅線損耗優勢。並且針對變壓器繞組的並聯模式和繞組排列進行探討及優化,最終選擇交流損耗最小的情況做為變壓器繞組設計。同時將變壓器的尺寸大小利用參數化設計,在有限的電路面積下選擇最佳的鐵芯損耗與銅線損耗的平衡點。並且利用ANSYS的磁性模擬軟體Maxwell驗證四分之一圈平板變壓器的電壓轉換比與磁通密度分布是否符合設計理論,最終實現切換頻率操作於1 MHz、輸入電壓48 V、輸出電壓12 V、輸出功率為1500 W且功率密度為26W/cm3,最高效率可以達到97.6%的LLC串聯諧振式轉換器。


For data centers, this study proposes an isolated DC-DC converter with MHz-level switching frequency that can achieve zero voltage switching and zero current switching over the full load range, by setting the switching frequency above the resonant frequency to ensure the best efficiency as a DC Transformer. Considering the inrush current issue at start-up, this work uses Simplified Optimal Trajectory Control(SOTC) based on the graphic state-trajectory analysis for soft start-up to protect the circuit and quickly increase the output voltage. In the proposed LLC resonant converter, conventional silicon devices are replaced with wide band-gap gallium nitride devices to reduce switching losses in the power device. This work adopts a quarter-turn transformer structure for low voltage and high current applications to reduce the DC resistance and copper loss. The turns ratio of quarter turn transformer remains 4:1, but the path of the primary and secondary winding is equivalent to a quarter turn. The current sharing between parallel layers and winding arrangement of the transformer is analyzed to choose the lowest AC copper loss for the design. Within a limited circuit layout area, optimal points for the efficiency of core loss and copper loss were calculated. The magnetic simulation software ANSYS Maxwell was employed to verify whether the voltage ratio and the planar transformer conformed to the design theory. Finally, a resonant converter was achieved with a switching frequency operating at 1 MHz, an input voltage of 48 V, an output voltage of 12 V, an output power of 1.5 kW, the power density of 26 W/cm3, and maximum efficiency of 97.6%.

摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內文大綱 第二章 全橋LLC串聯諧振轉換器與啟動控制設計 2.1 全橋LLC串聯諧振轉換器 2.2 動作狀態平面圖分析 2.2.1 第一諧振頻率點電路動作及狀態平面軌跡分析 2.2.2 Region-I(SRC)區間電路動作及狀態平面軌跡分析 2.2.3 Region-II(LLC)區間電路動作及狀態平面軌跡分析 2.3 啟動電流分析與探討 2.3.1 啟動電流分析 2.3.2 二極體箝位電路 2.3.3 頻率調變啟動技術 2.4 暫態探討與設計 2.4.1 啟動方法分析 2.4.2 最佳化軌跡控制與啟動參數推導 第三章 分數圈變壓器結構分析與設計 3.1 分數圈變壓器動作區間 3.2 鐵芯結構設計與分析 3.2.1 鐵芯參數化分析 3.2.2 鐵芯損耗 3.3 繞組並聯結構分析 3.3.1 變壓器繞組並聯分析 3.3.2 變壓器繞組磁動勢分析 3.3.3 銅線損耗 3.4 變壓器損耗最佳化 3.5 Maxwell模擬驗證 第四章 實驗測量數據與結果 4.1 實體電路 4.2 實測波形 4.3 實測數據 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

[1] P. Delforge and J. Whitney, “Data Center Efficiency Assessment,” Natural Resources Defense Council (NRDC), 2014. [Online]. Available:
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf.
[2] United States Department of Energy, “Energy 101: Energy Efficient Data Centers.” [Online]. Available:
https://www.energy.gov/eere/videos/energy-101-energy-efficient-data-centers
[3] Efficiency in Data Centers. [Online]. Available:
https://www.comsoc.org/publications/tcn/2019-nov/energy-efficiency-data-centers
[4] E. R. Masanet et al., Global Data Center Energy Use: Distribution, Compo- sition, and Near-Term Outlook, Evanston, IL, 2018.
[5] IEA (2020), “Data Centers and Data Transmission Networks”, IEA, Paris, 2020. [Online]. Available:
https://www.iea.org/reports/datacentres-and-data-transmission-networks
[6] M. Mu and F. C. Lee, “Design and Optimization of a 380–12 V High-Frequency, High-Current LLC Converter With GaN Devices and Planar Matrix Transformers’’ in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854-862, Sept. 2016, doi: 10.1109/JESTPE.2016.2586964.
[7] C. Wang and P. Jain, “A Quantitative Comparison and Evaluation of 48V DC and 380V DC Distribution Systems for Datacenters,” 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), 2014, pp. 1-7, doi: 10.1109/INTLEC.2014.6972112.
[8] E. Taylor, M. Korytowski and G. Reed, “Voltage Transient Propagation in AC and DC Datacenter Distribution Architectures,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 1998-2004, doi: 10.1109/ECCE.2012.6342567.
[9] IEEE.tv, “KeyTalk with Xin Li and Shuai Jiang: Google 48V Power Architecture – APEC 2017.” [Online]. Available:https://ieeetv.ieee.org/ieeetv-specials/keytalk-xin-li-and-shuai-jiang-google-48v-power-architecture-apec-2017?rf=events|114&
[10] R. Rong and R. Wang, “High efficiency 1.5kW 48V-12V DCDC Converter with Leadless MOSFET for Mild Hybrid Electric Vehicle,” PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, 2018, pp. 1-6.
[11] L. Zhang and S. Chakraborty, “An Interleaved Series-Capacitor Tapped Buck Converter for High Step-Down DC/DC Application,” in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6565-6574, July 2019,doi: 10.1109/TPEL.2018.2877309.
[12] Y. Zhang and M. de Rooij, “300 W 48V-12V Digitally Controlled 1/16 Brick DC-DC Converter Using GaN FETs,” PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Germany, 2020, pp. 1-4.
[13] S. Webb and Y. Liu, “12 Switch Zero-Inductor Voltage Converter Topology,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 2189-2196, doi: 10.1109/APEC.2019.8722328.
[14] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, “A Resonant Switched Capacitor Based 4-to-1 Bus Converter Achieving 2180 W/in3 Power Density and 98.9% Peak Efficiency,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 121-126, doi: 10.1109/APEC.2018.8340997.
[15] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, “A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter for Data Centers with 99% Peak Efficiency and 2500 W/in3 Power Density,” 2019 IEEE Applied Power Electronics Conference and Exposition(APEC), Anaheim, CA, USA, 2019, pp. 13-18, doi: 10.1109/APEC.2019.8721812.
[16] G. Sovik, T. Urkin, E. E. Masandilov and M. Mordechai Peretz, “Optimal Self-Tuning Control for Data-Centers’ 48V-12V ZCS-STC,” 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 455-462, doi: 10.1109/APEC39645.2020.9124129.
[17] S. Jiang, C. Nan, X. Li, C. Chung, and M. Yazdani, “Switched Tank Converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo., San Antonio, TX, USA, 2018, pp. 81–90.
[18] Y. Ren, M. Xu, K. Yao and F. C. Lee, “Two-stage 48 V Power Pod Exploration for 64-bit Microprocessor,” Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03., Miami Beach, FL, USA, 2003, pp. 426-431 vol.1, doi: 10.1109/APEC.2003.1179248.
[19] M. Ahmed, C. Fei, F. C. Lee and Q. Li, “High Efficiency Two-Stage 48V VRM with PCB Winding Matrix Transformer,” 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7855150.
[20] T. Liu, X. Wu and S. Yang, “1 MHz 48V-12V Regulated DCX with Single Transformer,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2019.2955607.
[21] M. H. Ahmed, A. Nabih, F. C. Lee and Q. Li, “High-efficiency, High-density Isolated/Regulated 48V Bus Converter with a Novel Planar Magnetic Structure,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 468-475, doi: 10.1109/APEC.2019.8722216.
[22] M. H. Ahmed, F. C. Lee and Q. Li, “Two-Stage 48V VRM With Intermediate Bus Voltage Optimization For Data Centers,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2020.2976107.
[23] B. Yang, F. C. Lee, A. J. Zhang and G. S. Huang, “LLC Resonant Converter for Front end DC/DC Conversion,” APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), Dallas, TX, USA, 2002, pp. 1108-1112 vol.2.
[24] B. Yang, “Topology Investigation of Front End DC/DC Power Conversion for Distributed Power System,” PhD Dissertation, 2003.
[25] W. Feng and F. C. Lee, “Optimal Trajectory Control of LLC Resonant Converters for Soft Start-Up,” in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1461-1468, March 2014, doi: 10.1109/TPEL.2013.2261094.
[26] W. Feng and F. C. Lee, “Optimal Trajectory Control of LLC Resonant Converters for Soft Start-up,” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 1445-1451, doi: 10.1109/APEC.2013.6520488.
[27] C. Fei, W. Feng, F. C. Lee and Q. Li, “Soft Start-up for High Frequency LLC Resonant Converter with Optimal Trajectory Control,” 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 609-615, doi: 10.1109/APEC.2015.7104412.
[28] C. Fei, W. Feng, F. C. Lee and Q. Li, “Digital Implementation of Soft Start-Up and Short-Circuit Protection for High-Frequency LLC Converters With Optimal Trajectory Control (OTC),” in IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8008-8017, Oct. 2017, doi: 10.1109/TPEL.2016.2631467.
[29] C. Fei, W. Feng, F. C. Lee and Q. Li, “State-trajectory Control of LLC Converter Implemented by Microcontroller,” 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014, pp. 1045-1052, doi: 10.1109/APEC.2014.6803436.
[30] A. Nabih, M. Ahmed, Q. Li and F. C. Lee, “Simplified Optimal Trajectory Control for 1 MHz LLC Converter with Wide Input Voltage Range,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 212-219, doi: 10.1109/APEC.2019.8722275.
[31] A. Nabih, M. H. Ahmed, Q. Li and F. C. Lee, “Transient Control and Soft Start-Up for 1-MHz LLC Converter With Wide Input Voltage Range Using Simplified Optimal Trajectory Control,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 24-37, Feb. 2021, doi: 10.1109/JESTPE.2020.2973660.
[32] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014, doi: 10.1109/TPEL.2013.2268900.
[33] U. K. Mishra, P. Parikh and Yi-Feng Wu, “AlGaN/GaN HEMTs-an overview of Device Operation and Applications,” in Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, June 2002, doi: 10.1109/JPROC.2002.1021567.
[34] D. Lin, P. Zhou, W. N.Fu, Z. Badics and Z. J. Cendes, “A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis,” in IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1318-1321, March 2004, doi: 10.1109/TMAG.2004.825025.
[35] H. Cui and K. D. T. Ngo, “Transient Core-Loss Simulation for Ferrites With Nonuniform Field in SPICE,” in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 659-667, Jan. 2019, doi: 10.1109/TPEL.2018.2812856.
[36] Y. C. Liu, C Chen, K. D. Chen, Y. L. Syu, M. C. Tsai, “High-Frequency LLC Resonant Converter with GaN Devices and Integrated Magnetics,” Energies 2019, 12, 1781.
[37] C. Fei, W. Feng, F. C. Lee and Q. Li, “High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9072-9082, Nov. 2017, doi: 10.1109/TIE.2017.2674599.
[38] D. Huang, S. Ji and F. C. Lee, "LLC Resonant Converter With Matrix Transformer," in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4339-4347, Aug. 2014, doi: 10.1109/TPEL.2013.2292676.
[39] S. Wang, H. Wu, F. C. Lee and Q. Li, "Integrated Matrix Transformer with Optimized PCB Winding for High-Efficiency High-Power-Density LLC Resonant Converter," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 6621-6627, doi: 10.1109/ECCE.2019.8911885.
[40] E. Rong, S. Li, R. Zhang, X. Du, Q. Min and S. Lu, "A Magnetic Integration Half-turn Planar Transformer for LLC Resonant DC-DC Converters," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 484-488, doi: 10.1109/APEC.2018.8341055.
[41] M. K. Ranjram and D. J. Perreault, "Leveraging Multi-Phase and Fractional-Turn Integrated Planar Transformers for Miniaturization in Data Center Applications," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265752.
[42] Y. C. Liu et al., "Design and Implementation of a Planar Transformer With Fractional Turns for High Power Density LLC Resonant Converters," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5191-5203, May 2021, doi: 10.1109/TPEL.2020.3029001.
[43] Y. C. Liu et al., "Quarter-Turn Transformer Design and Optimization for High Power Density 1-MHz LLC Resonant Converter," in IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1580-1591, Feb. 2020, doi: 10.1109/TIE.2019.2902821.
[44] M. H. Ahmed, F. C. Lee, Q. Li and M. d. Rooij, "Design Optimization of Unregulated LLC Converter with Integrated Magnetics for Two-Stage 48V VRM," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 521-528, doi: 10.1109/ECCE.2019.8912785.
[45] Infineon Inc., “Resonant LLC Converter: Operation and Design 250W 33Vin 400Vout Design Example.” [Online]. Available:https://www.infineon.com/dgdl/Infineon-MOSFET_OptiMOS_resonant_LLC_converter_operation_and_design-AN-v01_00-EN.pdf?fileId=db3a30433acf32c9013ad11cddde01b6
[46] MPS Inc., “Application Note for an LLC Resonant Converter Using Resonant Controller HR1000A.” [Online]. Available:https://www.monolithicpower.cn/cn/documentview/productdocument/index/version/2/document_type/Application%20Note/lang/en/sku/HR1000A/document_id/5926/
[47] C. Fei, M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48 V-12 V/6 V-1.8 V Voltage Regulator Module With Dynamic Bus Voltage Control for Light-Load Efficiency Improvement," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5628-5636, July 2017, doi: 10.1109/TPEL.2016.2605579.
[48] B. Yang, F. C. Lee and M. Concannon, "Over Current Protection Methods for LLC Resonant Converter," Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03., 2003, pp. 605-609 vol.2, doi: 10.1109/APEC.2003.1179276.
[49] Y. -C. Liu et al., "Design and Development of a Fractional-turn Transformer for High Power Density LLC Resonant Converters," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 335-342, doi: 10.1109/APEC42165.2021.9487397.
[50] P. L. Dowell, "Effects of Eddy Currents in Transformer Windings," in Proceedings of the Institution of Electrical Engineers, vol. 113, no. 8, pp. 1387-1394, August 1966, doi: 10.1049/piee.1966.0236.
[51] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020, doi: 10.1109/TPEL.2020.2969295.

無法下載圖示 全文公開日期 2026/09/06 (校內網路)
全文公開日期 2026/09/06 (校外網路)
全文公開日期 2026/09/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE