簡易檢索 / 詳目顯示

研究生: 王慕曦
Mu-Xi Wang
論文名稱: 格狀地盤改良尺寸分析和詮釋方法比較
Numerical investigation for geometry of grid-type ground improvement to liquefiable soils
指導教授: 盧之偉
Chih-Wei Lu
鄭世豪
Shih-Hao Cheng
口試委員: 盧之偉
Chih-Wei Lu
鄭世豪
Shih-Hao Cheng
張德文
Dao-Wen Zhang
魏敏樺
Meen-Wah Gui
徐文信
Wen-Shinn Shyu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 191
中文關鍵詞: 格狀地盤改良土壤液化側向阻抗改良率
外文關鍵詞: Grid type ground improvement, soil liquefaction, lateral resistance, improvement ratio
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 格狀地盤改良工法系以改良壁體圍束可能液化土壤,形成地下圍束結構,可以提供額外的剪切強度,減少圍束中心土壤應變的發生,已經在實際工程案例和相關研究證明其於土壤液化防治的應用性。本研究以三維有限元素動力分析工具(OpenSeesPL),使用非線性彈塑性土壤模型(PDMY02),在考慮孔隙水壓力的情況下,探討不同地震等級、不同土層強度、不同改良深度和各項土壤參數變化之下,對地盤改良成效之影響性,通過有限元素分析結果,研究格狀地盤改良工法處理的液化土層中剪應力的分佈,以及,土壤中的超額孔隙水壓力分佈,利用不同物理(力學)特性之土壤液化詮釋方法(例如:抗液化安全係數、孔隙水壓力比評估),最後對分析結果進行綜合分析,並討論最佳設計改良率,期能在滿足經濟性前提下,以圖表方式提供更直接的設計資訊予工程師參考,如何選用合理的改良率進行改良壁體尺寸設計,以落實格狀地盤改良工法於高液化潛勢土壤上中低層構造物的液化防治的應用,和提昇國內中低層構造物震後恢復力和減少災後的損失。


    The grid-type ground improvement method is currently being utilized to mitigate soil liquefaction by confining the surrounding soil and forming underground seismic walls. This method enhances lateral resistance and reduces soil strain in the specified region. Its effectiveness has been proven in practical engineering cases and research studies. In this study, we employed a three-dimensional finite element dynamic analysis tool (OpenSeesPL) and a nonlinear elastoplastic soil model (PDMY02) to investigate the impact of different seismic levels, soil strengths, liquefaction layer thicknesses, and variations in soil parameters on the effectiveness of ground improvement. We analyzed the distribution of shear stress and excess pore water pressure in the treated liquefied soil layer using finite element analysis. Two different methods of interpreting soil liquefaction were employed: liquefaction safety factor and pore water pressure ratio. We comprehensively examined the analysis results and discussed the optimal improvement ratio. Our aim is to provide engineers with graphical design information that facilitates the selection of a suitable improvement ratio for designing the dimensions of grid-type ground improvement. This research aims to promote the application of the grid-type ground improvement method for mitigating liquefaction in high-liquefaction potential soil beneath mid- to low-rise structures. Enhancing post-earthquake resilience and reducing post-disaster losses contribute to the overall improvement of structures.

    目次 摘要 I Abstract III 致謝 V 目次 VII 表次 X 圖次 XII 第一章 緒論 1-1 1.1 研究動機與目的 1-1 1.2 研究方法與內容 1-2 1.3 研究流程與論文內容 1-3 第二章 文獻回顧 2-1 2.1 都會區的土壤液化防治工法 2-1 2.2 格子狀地盤改良於土壤液化防治的應用 2-4 2.3 格子狀地盤於土壤液化防治的應用案例 2-25 2.4 格子狀地盤改良工法基於剪應力的設計 2-25 2.4.1剪應變諧和的設計原理 2-6 2.4.2剪應變不諧和的設計原理 2-7 2.4 格子狀地盤改良工法基於孔隙水壓力的設計 2-25 2.5 液化地盤格狀改良之分析程式的比較 2-39 第三章 分析程式的應用和驗證 3-1 3.1 數值分析軟體概述 3-1 3.2土壤液化組構模型 3-3 3.3 分析程式之合理性驗證 3-12 3.3.1驗證案例背景說明 3-15 3.3.2數值模型和分析參數 3-16 3.3.3驗證參數(孔隙水壓力和加速度) 3-17 3.4自由場分析結果 3-18 第四章 格狀地盤改良有限元素基礎模型 4-1 4.1基礎分析模型建立 4-1 4.2基礎模型分析參數和輸入地震力 4-4 4.3格狀圍束效應下之靜止土壓力係數影響 4-6 4.4格狀圍束效應下之剪應變諧和/不諧和影響 4-17 第五章 影響參數研究及最佳改良尺寸分析 5-1 5.1格狀改良-土層相對密度的影響 5-2 5.1.1抗液化安全係數(FL) 5-3 5.1.2超額孔隙水壓力比(Ru) 5-5 5.2 格狀改良-輸入加速度的影響 5-9 5.2.1抗液化安全係數(FL) 5-3 5.2.2超額孔隙水壓力比(Ru) 5-5 5.3 格狀改良-改良尺寸的影響 5-13 5.3.1抗液化安全係數(FL) 5-3 5.2.2超額孔隙水壓力比(Ru) 5-5 5.4 抗液化安全係數與水壓力比分析結果比較 5-17 第六章 結論與建議 6-1 6.1 結論 6-1 6.2 建議 6-12 參考文獻 參-1 附錄…………………………………………………………...........附錄-1 附錄一、Rrd影響參數研究-綜合分析 附錄-1 附錄二、FL影響參數研究-地質條件 附錄-10 附錄三、Ru影響參數研究-地質條件 附錄-18 附錄四、FL影響參數研究-輸入加速度 附錄-26 附錄五、Ru影響參數研究-輸入加速度 附錄-34 附錄六、FL影響參數研究-改良尺寸 附錄-42 附錄七、Ru影響參數研究-改良尺寸 附錄-47

    1.土壤液化潛勢區域分佈圖,中央地質調查所
    2.陳正興、吳偉特、黃俊鴻,“羅東核能廠模型基地土壤地震之量測(三):水平地盤受震反應分析研究”,國立臺灣大學,(1992)。
    3.張志豪、廖洪鈞,“煤灰現地攪拌改良後之材料大地工程性質探討”,國立臺灣科技大學,(2006)。
    4.劉益宏、李明書、林柏強,“以地盤改良工法進行土壤液化防治與災後修復補強實例探討”,技師期刊,98期,P63-71,(2022)。
    5.廖洪鈞、陳福勝,“地盤改良設計施工及案例”,中華民國大地工程學會出版,(2006)。
    6.蕭江碧、廖鴻鈞,“建築物基礎設計規範之研究-地層改良”,內政部建築研究所,(2004)。
    7.小西一生, et al. "浦安住宅地の格子状地盤改良による液状化対策の設計法と模型実験 (特集 地盤の液状化対策の最前線: 調査・設計・施工と検証への取組み)." 基礎工= The foundation engineering & equipment, monthly: 土木・建築基礎工事と機材の専門誌/< 基礎工> 編集委員会 編 49.5 (2021): 40-43.
    8.足立有史, et al. "地盤固化工法を用いた杭基礎の耐震補強工法の実大実験." 土木学会論文集 C 63.3 (2007): 752-762.
    9.橋本光則. "格子状地盤改良による対策." 基礎工= The foundation engineering & equipment, monthly: 土木・建築基礎工事と機材の専門誌/< 基礎工> 編集委員会 編 40.10 (2012): 53-55.
    10.熊野豪人, et al. "格子状地盤改良を活用し極大地震に対して杭の安全性・健全性を確保した基礎構造の設計事例." 基礎工= The foundation engineering & equipment, monthly: 土木・建築基礎工事と機材の専門誌/< 基礎工> 編集委員会 編 49.8 (2021): 50-53.
    11.Arulmoli, K. "VELACS: Verification of liquefaction analyses by centrifuge studies, laboratory testing program." Soil data report (1992).
    12.Asgari, Ali, Mohammad Oliaei, and Mohsen Bagheri. "Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques." Soil Dynamics and Earthquake Engineering 51 (2013): 77-96.
    13.Baez, J. I. "A design model for the reduction of soil liquefaction by using vibro-stone columns." University of Southern California, Los Angeles (1995).
    14.Beaty, Michael, and Peter M. Byrne. "An effective stress model for pedicting liquefaction behaviour of sand." Geotechnical Earthquake Engineering and Soil Dynamics III. ASCE, 1998.
    15.Byrne, Peter M. "A cyclic shear-volume coupling and pore pressure model for sand." Proceedings of the 2nd international conference on recent advances in geotechnical earthquake engineering and soil dynamics. Vol. 1. Geotechnical Special Rublication, 1991.
    16.Byrne, Peter M., et al. "Numerical modeling of liquefaction and comparison with centrifuge tests." Canadian Geotechnical Journal 41.2 (2004): 193-211.
    17.Durgunoglu, H. Turan. "Utilization of high modulus columns in foundation engineering under seismic loadings." US 8th National Conf. on Earthquake Engineering, Earthquake Engineering Research Institute. 2006.
    18.Elgamal, Ahmed, et al. "Modeling of cyclic mobility in saturated cohesionless soils." International Journal of Plasticity 19.6 (2003): 883-905.
    19.Finn, WD Liam, Kwok W. Lee, and Geoffrey R. Martin. "An effective stress model for liquefaction." Journal of the Geotechnical Engineering Division 103.6 (1977): 517-533.
    20.Funahara, H., et al. "Centrifuge tests on liquefaction suppression effect of overburden pressure from shallow foundations." Proceedings of the 9th International Conference on Urban Earthquake Engineering and 4th Asia Conference on Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, 6–8 March. 2012.
    21.Gonzalez, Lenart, Tarek Abdoun, and Michael K. Sharp. "Modelling of seismically induced liquefaction under high confining stress." International Journal of Physical Modelling in Geotechnics 2.3 (2002): 01-15.
    22.Iai, Susumu. "A strain space multiple mechanism model for cyclic behavior of sand and its application." Doctoral Thesis, University of Tokyo (1991).
    23.Ishibashi, I., M. A. Sherif, and C. Tsuchiya. "Pore-pressure rise mechanism and soil liquefaction." Soils and Foundations 17.2 (1977): 17-27.
    24.Ishihara, Kenji, Fumio Tatsuoka, and Susumu Yasuda. "Undrained deformation and liquefaction of sand under cyclic stresses." Soils and foundations 15.1 (1975): 29-44.
    25.Ishihara, Kenji, and Ikuo Towhata. "Sand response to cyclic rotation of principal stress directions as induced by wave loads." Soils and foundations 23.4 (1983): 11-26.
    26.Kammerer, A., et al. "Cyclic simple shear testing of Nevada sand for PEER Center project 2051999." Geotechnical Engineering Research Report UCB/GT/00-01, University of California, Berkeley, Calif (2000).
    27.Khosravifar, Arash. Analysis and design for inelastic structural response of extended pile shaft foundations in laterally spreading ground during earthquakes. University of California, Davis, 2012.
    28.Kitazume, M., and H. Takahashi. "Centrifuge model tests on effect of deep mixing wall spacing on liquefaction mitigation." Proceedings of the 7th International Conference on Urban Earthquake Engineering & 5th International Conference on Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan. 2010.
    29.Kondner, Robert L. "Hyperbolic stress-strain response: cohesive soils." Journal of the Soil Mechanics and Foundations Division 89.1 (1963): 115-143.
    30.Lee, M. K. W., and W. D. L. Finn. "Dynamic effective stress analysis of soil deposits with energy transmitting boundary including assessment of liquefaction: DESRA-2. Soil Mechanics Series no. 38, Vancouver." British Columbia 5 (1978).
    31.Liao, H. J., et al. "Properties of hydraulically dumped coal ash after soil mixing improvement." Grouting and Deep Mixing 2012. 2012. 1373-1384.
    32.Lu, Jinchi, Zhaohui Yang, and Ahmed Elgamal. "OpenSeesPL three-dimensional lateral pile-ground interaction version 1.00 user's manual." Rep. No. SSRP-06 3 (2006).
    33.Martin, Geoffrey R., H. Bolton Seed, and WD Liam Finn. "Fundamentals of liquefaction under cyclic loading." Journal of the Geotechnical Engineering Division 101.5 (1975): 423-438.
    34.Marcuson III, William F., and Wayne A. Bieganousky. "Laboratory standard penetration tests on fine sands." Journal of the Geotechnical Engineering Division 103.6 (1977): 565-588.
    35.Mazzoni, Silvia, et al. "OpenSees command language manual." Pacific Earthquake Engineering Research (PEER) Center 264.1 (2006): 137-158.
    36.Namikawa, Tsutomu, Junichi Koseki, and Yoshio Suzuki. "Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation." Soils and Foundations 47.3 (2007): 559-576.
    37.Nguyen, T. V., et al. "Design of DSM grids for liquefaction remediation." Journal of geotechnical and geoenvironmental engineering 139.11 (2013): 1923-1933.
    38.Oka, F., et al. "A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus." Geotechnique 49.5 (1999): 661-680.
    39.O'rourke, T. D., and S. H. Goh. "Reduction of liquefaction hazards by deep soil mixing." Post-Earthquake reconstruction strategies: NCEER-INCEDE center-to-Center project. 1997. 87-105.
    40.Park, Sung-Sik, and Peter M. Byrne. "Stress densification and its evaluation." Canadian Geotechnical Journal 41.1 (2004): 181-186.
    41.Park, Sung-Sik. A two mobilized-plane model and its application for soil liquefaction analysis. Diss. University of British Columbia, 2005.
    42.Parra-Colmenares, Ender Jose. Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems. Rensselaer Polytechnic Institute, 1996.
    43.Phillips, Camilo, et al. "Significance of small strain damping and dilation parameters in numerical modeling of free-field lateral spreading centrifuge tests." Soil Dynamics and Earthquake Engineering 42 (2012): 161-176.
    44.Prevost, Jean H. "A simple plasticity theory for frictional cohesionless soils. " International Journal of Soil Dynamics and Earthquake Engineering 4.1 (1985): 9-17.
    45.Puebla, Humberto, Peter M. Byrne, and Ryan Phillips. "Analysis of CANLEX liquefaction embankments: prototype and centrifuge models." Canadian Geotechnical Journal 34.5 (1997): 641-657.
    46.Rahmani, Fereshteh, et al. "Effect of grid-form deep soil mixing on the liquefaction-induced foundation settlement, using numerical approach." Arabian Journal of Geosciences 15.12 (2022): 1112.
    47.Rayamajhi, Deepak, et al. "Numerical study of shear stress distribution for discrete columns in liquefiable soils." Journal of Geotechnical and Geoenvironmental Engineering 140.3 (2014): 04013034.
    48.Seed, H. Bolton, and Izzat M. Idriss. "Simplified procedure for evaluating soil liquefaction potential." Journal of the Soil Mechanics and Foundations division 97.9 (1971): 1249-1273.
    49.Seed, H. Bolton, Philippe P. Martin, and John Lysmer. "Pore-water pressure changes during soil liquefaction." Journal of the geotechnical engineering division 102.4 (1976): 323-346.
    50.Sherif, Mehmet A., Isao Ishibashi, and Chuzo Tsuchiya. "Pore-pressure prediction during earthquake loadings." Soils and Foundations 18.4 (1978): 19-30.
    51.Steedman, R. Scott, Richard H. Ledbetter, and Mary Ellen Hynes. "The influence of high confining stress on the cyclic behavior of saturated sand." Soil Dynamics and Liquefaction 2000. 2000. 35-57.
    52.Sugawara, N., Y. Ito, and M. Kawai. "New core sampler with planet gear for investigating the cement-mixed ground." Grouting and Deep Mixing, Proc., IS-Tokyo 96 (1996): 635-658.
    53.Suzuki, K., R. Babasaki, and Y. Suzuki. "Centrifuge tests on liquefaction-proof foundation." Proc., Centrifuge. Vol. 91. 1991.
    54.Tokimatsu, Kohji, Hatsukazu Mizuno, and Masaaki Kakurai. "Building damage associated with geotechnical problems." Soils and foundations 36 (1996): 219-234.
    55.Ueng, Tzou-Shin, and Chung-Jung Lee. "Deformation behavior of sand under shear—particulate approach." Journal of Geotechnical Engineering 116.11 (1990): 1625-1640.
    56.Wu G., VERSAT-P3D: Dynamic analyses of pile foundations. Wutec Geotechnical International, Canada, (2004).
    57.Yang, Zhaohui. Numerical modeling of earthquake site response including dilation and liquefaction. Columbia University, 2000.
    58.Yang, Zhaohui, Jinchi Lu, and Ahmed Elgamal. "OpenSees soil models and solid-fluid fully coupled elements: User’s manual." Dept. of Structural Engineering, Univ. of California, San Diego (2008).

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE