簡易檢索 / 詳目顯示

研究生: 徐紹恩
Shau-En Shiu
論文名稱: 以奈米壓痕測試評估隱形眼鏡表面性質之研究
Evaluation of the surface properties of contact lens via nanoindenter
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
Yao-Hsuan Tseng
黎佳霖
Chia-Lin Li
江騏瑞
Chi-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 77
中文關鍵詞: 隱形眼鏡奈米壓痕摩擦係數
外文關鍵詞: Contact lens, Nanoindentation, Coefficient of friction
相關次數: 點閱:241下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在隱形眼鏡上進行表面摩擦係數的分析,用以建立一套分析模式來獲取每款
    隱形眼鏡的表面摩擦係數。利用奈米壓痕中的刮痕模式來獲取摩擦係數,以奈米壓痕來
    模擬眼皮與隱形眼鏡之前的摩擦。在分析摩擦係數過程中,為了更符合與人體配戴的舒
    適感,會分別分析從新的樣品開封後,和開封後放置 1、2、3 個小時,目的是為了分析
    水分散失與摩擦係數之間的關係。本實驗利用奈米壓痕分析儀中的刮痕模式建立一套可
    測量隱形眼鏡摩擦係數的方法,進而提供產品發展指標,並有助於進行產品優化。
    此分析過程,會分成 3 個階段進行分析;依序分別為:初步測試與可行性評估、最
    佳化測試、標準化測試方法。初步測試與可行性評估:會分析隱形眼鏡是否有效使用奈
    米壓痕進行量測,且起初會使用 4 款隱形眼鏡進行分析,以及參數上的選擇;最佳化測
    試:會使用 10 款市售隱形眼鏡進行分析,並且使用多種速度及正向力,比較之間的差
    異以及現象;標準化測試方法:由最佳化測試中發現,剛拆封時的隱形眼鏡表面上的水
    分,會影響摩擦係數之穩定性,所以,會將剛拆封之隱形眼鏡放置一段時間後,再進行
    量測,靜置時間會以每 20 分鐘為單位測量;此外,也會在靜置每 20 分鐘後添加人工淚
    液,與未添加人工淚液比較差異。
    最終,由初步測試與可行性評估可知,隱形眼鏡會因為每款軟硬度的不同,導致每
    款隱形眼鏡所能使用的正向力也不同;在最佳化測試中,使用速度為 0.33μm/s 之摩擦
    係數最為不穩定,其原因很有可能受到隱形眼鏡含水量的影響,以及剛拆封後表面殘有
    水分,而導致測量摩擦係數較為不穩定;最後由標準化測試方法驗證,剛拆封後的隱形
    眼鏡,明顯地會造成摩擦係數之穩定度,而且會隨著靜置時間的增加,穩定度也隨之提
    高。由於,在測量在同一片的隱形眼鏡上,摩擦係數差異太大是不可行的,所以,使用
    此方法,可以有效地在奈米壓痕上測量出穩定之摩擦係數,以方便進行產品之比較及優
    化。


    In this study, the coefficient of friction for contact lenses was analyzed to establish analysis
    methods to obtain the surface coefficient of friction. Use the scratch mode in nanoindenter to obtain
    the coefficient of friction, and simulate the friction between the eyelids and the contact lens. In the
    process of analyzing, in order to be more comfortable with the human feeling, the new samples will
    be analyzed separately for after opening 1, 2, 3 hours, the purpose is to analyze the water loss
    condition. This experiment uses the scratch mode in the nanoindenter to establish methods that can
    measure the coefficient of friction, thereby providing product development indicators and helping
    to optimize products.
    This analysis will be divided into three stages. Preliminary test and feasibility evaluation
    will analyze whether contact lenses can be measured using nanoindenter and initially will use
    4 contact lenses for analysis as well as the selection of parameters. Optimization test will use
    10 commercially sample and test 3 speed and a lot of normal force to comparison differences.
    Standardized test will be placed for a period of time because water content on the contact lens
    surface obviously affect coefficient of friction. Therefore, the he resting time will be measured in
    units of 20 minutes in addition, artificial tears will be added every 20 minutes and compared with
    no artificial tears.
    Finally, can be known that each contact lens have to use different normal force because
    the contact lens have different hardness from the preliminary test and feasibility evaluation. In
    Optimization test, the use speed is 0.33μm/s that is the most unstable because of the content
    lens just after unpacking. To verify unpacked is most effect reason by the standardized test that
    obviously cause the stability of the coefficient of friction and the stability will increase as the
    placing time. Since it is not feasible to measure the coefficient of friction on the same contact lens
    with difference, this method can be used to measure the stable coefficient of friction on the
    nanoindenter to facilitate product comparison and optimization.

    目錄 摘要..........................................................................................................................................III ABSTRACT.............................................................................................................................IV 誌謝..........................................................................................................................................VI 目錄.........................................................................................................................................VII 圖目錄......................................................................................................................................IX 表目錄.....................................................................................................................................XII 第 1 章 前言........................................................................................................................ 1 第 2 章 文獻回顧................................................................................................................ 3 2.1 隱形眼鏡的發展背景................................................................................................. 3 2.2 隱形眼鏡的材料......................................................................................................... 4 2.2.1 隱形眼鏡材料的性質和特性.......................................................................... 4 2.2.2 鏡片的性質...................................................................................................... 5 2.2.3 矽和氟的開發.................................................................................................. 8 2.2.4 矽水凝膠的出現............................................................................................ 12 2.3 隱形眼鏡的製造....................................................................................................... 17 2.3.1 模鑄法(Moulding) ......................................................................................... 17 2.3.1 旋轉澆鑄法(Spin-Casting) ............................................................................ 21 2.3.1 車床切削(Lathe-Cutting)............................................................................... 24 2.4 隱形眼鏡表面性質分析方法................................................................................... 28 2.4.1 表面摩擦係數與舒適度................................................................................ 28 2.4.2 表面摩擦係數之分析.................................................................................... 28 2.5 前導文獻回顧與研究動機總結............................................................................... 31 第 3 章 實驗方法.............................................................................................................. 33 3.1 實驗流程................................................................................................................... 33 VIII 3.2 三階段的實驗規劃與參數設置............................................................................... 34 3.2.1 隱形眼鏡的樣品............................................................................................ 34 3.2.2 最佳化測試.................................................................................................... 37 3.2.3 標準化測試方法............................................................................................ 38 3.3 實驗分析儀器........................................................................................................... 40 第 4 章 結果與討論.......................................................................................................... 45 4.1 隱形眼鏡表面性質之分析........................................................................................ 45 4.1.1 位置影響測試................................................................................................ 45 4.1.2 每款正向力上限之分析................................................................................ 46 4.1.3 摩擦係數選取範圍......................................................................................... 46 4.1.4 摩擦係數測試................................................................................................ 47 4.1.5 隱形眼鏡拆封時間之影響摩擦係數分析.................................................... 54 4.2 使用奈米壓痕測量隱形眼鏡表面摩擦係數之方法與參數................................... 56 第 5 章 結論與未來展望.................................................................................................. 60 5.1 結論........................................................................................................................... 60 5.2 未來展望................................................................................................................... 61 參考文獻.................................................................................................................................. 62

    [1] A. Roguin, Adolf Eugen Fick (1829-1901)–The Man Behind the Cardiac Output
    Equation." The American Journal of Cardiology 133 (2020)162-165.
    [2] R.A. Robert, D.P. Steensma, M.A. Shampo, Otto wichterle—inventor of the first soft contact
    lenses. In: Mayo Clinic Proceedings. Elsevier (2016) 45-46.
    [3] Z.M. Jin, Biotribology. Current Orthopaedics 20.1 (2006)32-40.
    [4] Y. Tanatsugu, Preparation and Characterization of Thin Film Metallic Glass Coated Medical
    Needle for Property Improvements (2015)1-20.
    [5] A.W. Koller, The friction coefficient of soft contact lens surfaces in relation to comfort and
    performance. Diss. City University London (2014).
    [6] O. Sterner, R. Aeschlimann, S. Zürcher, K.O. Lorenz, J. Kakkassery, N.D. Spencer, S.G.
    Tosatti, Friction measurements on contact lenses in a physiologically relevant environment:
    effect of testing conditions on friction." Investigative ophthalmology & visual science 57.13
    (2016)5383-5392.
    [7] A.L. Carvalho, L.M. Vilhena, A. Ramalho, Study of the frictional behavior of soft contact
    lenses by an innovative method. Tribology International 153 (2021)106633.
    [8] J .Lamb, T. Bowden, The history of contact lenses. Contact Lenses E-Book (2018).
    [9] G. D'Avenio, C. Poli, C. Daniele, Oxygen permeability measurements of contact lenses: A
    proposal for accuracy improvement. 2013 35th Annual International Conference of the IEEE
    Engineering in Medicine and Biology Society (EMBC)(2013).
    [10] J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review. Am. J. Polym. Sci 4.2
    (2014)25-31.
    [11] A.G. Sabell, The history of contact lenses. Contact lenses 1 (1980)735-738.
    [12] O. Sitchevska, Contact Glasses in Keratoconus and in Ametropia: Report of
    Cases. American Journal of Ophthalmology 15.11 (1932)1028-1038.
    [13] W.A. Sammons, The Nissel Memorial Lecture Manufacturing—Materials, methods and
    measurements. Journal of The British Contact Lens Association 12 (1989)12-19.
    [14] J. Varikooty, N. Keir, C.A. Woods, D. Fonn, Measurement of the refractive index of soft
    contact lenses during wear. Eye & contact lens 36.1 (2010)2-5.
    [15] N.P.D. Tran, M.C. Yang, Synthesis and characterization of soft contact lens based on the
    combination of silicone nanoparticles with hydrophobic and hydrophilic monomers. Journal of
    Polymer Research 26.6 (2019)1-10.
    [16]C.S.A. Musgrave, F. Fang, Contact lens materials: a materials science
    perspective." Materials 12.2 (2019)261.
    [17] P. Ertl, An algorithm to identify functional groups in organic molecules. Journal of
    cheminformatics 9.1 (2017)1-7.
    [18] D.C. Lin, D.I. Shreiber, E.K. Dimitriadis, F. Horkay, Spherical indentation of soft matter
    63
    beyond the Hertzian regime: numerical and experimental validation of hyperelastic
    models. Biomechanics and modeling in mechanobiology 8.5(2009)345-358.
    [19] S. Gabler, J. Stampfl, T. Koch, S. Seidler, G. Schuller, H. Redl, R. Weidisch, Determination
    of the viscoelastic properties of hydrogels based on polyethylene glycol diacrylate (PEG-DA)
    and human articular cartilage. International Journal of Materials Engineering Innovation 1.1
    (2009)3-20.
    [20] B.A. Holden, G.W. Mertz, Critical oxygen levels to avoid corneal edema for daily and
    extended wear contact lenses. Investigative ophthalmology & visual science 25.10(1984) 1161-
    1167.
    [21] S. Abokyi, G. Manuh, H. Otchere, A. Ilechie, Knowledge, usage and barriers associated
    with contact lens wear in Ghana." Contact Lens and Anterior Eye 40.5(2017)329-334.
    [22] O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185.4706 (1960) 117-
    118.
    [23] H. Dang, C. Dong, L. Zhang, Sustained latanoprost release from PEGylated solid lipid
    nanoparticle-laden soft contact lens to treat glaucoma. Pharmaceutical Development and
    Technology just-accepted (2021)1-25.
    [24] H.H Brownell, The detection of compounds containing hydroxyl groups on paper
    chromatograms. Journal of Chromatography A 19 (1965)556-563.
    [25] H.B. Burgi, J.D. Dunitz, E. Shefter, Geometrical reaction coordinates. II. Nucleophilic
    addition to a carbonyl group. Journal of the American Chemical Society 95.15 (1973)5065-
    5067.
    [26] B.J Tighe, A. Mann, Contact lens materials. (1997).
    [27] B. Tighe, Silicone hydrogel materials-how do they work. Silicone hydrogels: the rebirth of
    continuous wear contact lenses (2000).
    [28] D.C Lin, D.I. Shreiber, E.K. Dimitriadis, F. Horkay, Spherical indentation of soft matter
    beyond the Hertzian regime: numerical and experimental validation of hyperelastic
    models. Biomechanics and modeling in mechanobiology 8.5 (2009)345-358.
    [29] K. Tanaka, K. Takahashi, M. Kanada, T. Yoshikawa, Methyldi (trimethylsiloxy)
    sylylpropylglycerol methacrylate. U.S. Patent No. 4,139,548.(1979).
    [30] K.P. McCabe, F.F. Molock, G.A. Hill, A. Alli, R.B. Steffen, D.G. Vanderlaan, K.A Young,
    Biomedical devices containing internal wetting agents. U.S. Patent No. 6,822,016.(2004).
    [31] B.J. Tighe, A. Mann, The development of biomaterials for contact lens applications: Effects
    of wear modality on materials design. Biomaterials and Regenerative Medicine in
    Ophthalmology. Woodhead Publishing (2016)369-399.
    [32] B.J. Tighe, Extended wear contact lenses." Biomaterials and Regenerative Medicine in
    Ophthalmology. Woodhead Publishing (2010)304-336.
    [33] C.S.A. Musgrave, F. Fang, Contact lens materials: a materials science
    perspective. Materials 12.2 (2019)261.
    [34] Y. Song, Z. Sun, G. Huang, N. Chen, X. Gao, An experimental investigation on the effect
    64
    of the ballasting on the coupled dynamics of the tunnel immersion system. Ocean
    Engineering 190 (2019)106412.
    [35] C. Coles, N.A. Brennan, Coefficient of friction and soft contact lens comfort. Optom Vis
    Sci 88 (2012).
    [36] T. Murakami, H. Higaki, Y. Sawae, N. Ohtsuki, S. Moriyama, Y. Nakanishi, Adaptive
    multimode lubrication in natural synovial joints and artificial joints. Proceedings of the
    Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212.1 (1998)
    23-35.
    [37] B.J. Tighe, A decade of silicone hydrogel development: surface properties, mechanical
    properties, and ocular compatibility. Eye & contact lens 39.1 (2013)4-12.
    [38] J.A Nairn, T.B. Jiang, Measurement of the friction and lubricity properties of contact lenses.
    (1995).
    [39] V. Ngai, J.B. Medley, L. Jones, J. Forrest, J. Teiehroeb, Friction of contact lenses: silicone
    hydrogel versus conventional hydrogel. Tribology and Interface Engineering Series. Vol. 48.
    Elsevier (2005)371-379.
    [40] A.C. Rennie, P.L. Dickrell, W.G. Sawyer, Friction coefficient of soft contact lenses:
    measurements and modeling. Tribology Letters 18.4 (2005)499-504.
    [41] G.M. Ross, B.J. Tighe, Measurement of frictional characteristics of contact lenses. Acta
    Ophthalmol (2006).
    [42] M. Roba, E.G. Duncan, G.A. Hill, N.D. Spencer, S.G.P. Tosatti, Friction measurements on
    contact lenses in their operating environment. Tribology Letters 44.3 (2011)387-397.
    [43] A. Mann, B. J. Tighe, Ocular biotribology and the contact lens: surface interactions and
    ocular response. Biomaterials and regenerative medicine in ophthalmology. Woodhead
    Publishing, (2016)45-74.

    QR CODE