簡易檢索 / 詳目顯示

研究生: 陳泓任
Hong-Ren Chen
論文名稱: 基於系統晶片平台之即時非接觸式脈搏律監控系統
A Real-Time Contactless Pulse Rate Monitoring System based on a Cost-Effective SoC Platform
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 沈中安
Chung-An Shen
陳維美
Wei-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 非接觸式量測遠距光體積變化描述術影像處理數位訊號處理
外文關鍵詞: contactless measurement, remote photoplethysmography, image processing, digital signal processing
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遠距光體積變化描述術(remote Photoplethysmography,rPPG)技術可以在健身運動期間使用,去量測運動者的即時脈搏律,但是脈搏訊號很容易因為運動中身體晃動或光照變化而導致錯誤的脈搏律估計。雖然先前有學者針對運動偽影與光線變化進行研究,但是當運動雜訊過大時,脈搏訊號仍然很容易失真導致估計出錯誤的心律。此外,先前的研究大多使用個人電腦做為開發環境去實現他們的方法。
    為了更好地解決這些問題,本論文希望在一低價的SoC平台上進行了這項非接觸式的脈搏律量測研究,透過攝影機的影像當輸入,並透過影像處理與數位訊號處理分析出rPPG訊號,進而推算出脈搏律。除此之外,我們也使用單指令多數據(Single Instruction Multiple Data, SIMD)技術去優化演算法,以達到即時的運算。三項運動器材的實驗中,本論文所提出的非接觸式量測方法所得到的平均絕對誤差/均方跟誤差於健身腳踏車、踏步機與跑步機分別為3.64/4.95 BPM、3.39/4.94 BPM與4.77/7.01 BPM,而Success Rate-5/10分別為0.66/0.81、0.73/0.89與0.73/0.87。在執行時間上,本論文的方法在Raspberry Pi 3 Model B plus平台上的整體執行時間約為26ms左右,即相機的幀率可以穩定在30FPS (Frame Per Second)。


    The remote photoplethysmography (rPPG) technique can be used during fitness exercise to optimize the effectiveness of a workout. But the pulse signals may lead to erroneous estimates because body motion and illumination variations in practice. Therefore, many studies have been proposed different methods to reduce motion artifacts and tackle the illumination variation challenge. However, stronger movements created in an exercise will still cause rPPG signal distortion easily. Moreover, most of the previous studies implemented their algorithm using language C or MATLAB on personal computer.
    In order to solve these problems, we use a SoC platform to construct a contactless pulse rate measurement system. A webcam is as an input and the output is the estimated pulse rate. The rPPG signal is analyzed using image processing and digital signal processing. We also optimize the algorithm using single instruction multiple data (SIMD) technology with a system on chip (SOC) Platform. In the experiment, the mean absolute error (MAE) / root mean square error (RMSE) of pulse rate measurement are 3.64/4.95 BPM in Biking; 3.39/4.94 BPM in Stepper and 4.77/7.01 BPM in treadmill running. The results also reveal that our method can run at 30 FPS (Frame Per Second) on Raspberry Pi 3 Model B plus.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 相關論文比較 4 1.4 論文架構 5 第二章、 研究背景 6 2.1 PPG定義與原理 6 2.2 rPPG訊號量測 7 2.3 rPPG訊號量測挑戰 8 2.3.1 移動雜訊 8 2.3.2 光線變化 8 2.4 rPPG相關生理參數應用 9 2.5 臉部偵測與追蹤 10 第三章、 研究方法 12 3.1 系統架構介紹 12 3.2 影像處理單元 14 3.2.1 Image Capture 14 3.2.2 Face Detection and Tracking 14 3.3 訊號處理單元 18 3.3.1 Motion Signal Analysis 18 3.3.2 Pulse Signal Analysis 19 3.3.3 Pulse Rate Calculation 21 3.4 演算法優化 26 3.4.1 Get RGB Data and Skin Comparison 27 3.4.2 Band-Pass Filter 28 3.4.3 Normalization 28 3.5 顯示介面設計 30 第四章、 實驗方法與結果討論 31 4.1 實驗流程與設計 31 4.2 實驗驗證與結果 33 4.2.1 實驗驗證 33 4.2.2 實驗一 34 4.2.3 實驗二 35 4.2.4 實驗三 36 4.3 執行時間 39 4.4 結果討論 41 4.4.1 畫面更新率 44 4.4.2 頻率延遲 45 第五章、 結論與未來展望 46 參考文獻 47

    [1] TTR台灣趨勢研究報告, "運動服務業發展趨勢," 台灣趨勢研究股份有限公司, 2017. [Online]. Available: http://www.twtrend.com/upload/shares/a_15299856880.pdf.

    [2] "促進健康體能的方法," 衛生福利部國民健康署, 2017. [Online]. Available: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=571&pid=882T.
    [3] B. Khanokh, Y. Slovik, D. Landau and M. Nitzan, "Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal," Medical & Biological Engineering & Computing, vol. 42, pp.80-85, 2004.
    [4] B. Khanokh, Y. Slovik, D. Landau and M. Nitzan, "Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal," Medical and Biological Engineering and Computing, vol. 42, pp.80-85, 2004.
    [5] G. de Haan and V. Jeanne, "Robust pulse rate from chrominance-based rPPG," IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp.2878-2886, Oct. 2013.
    [6] L. Feng, L.-M. Po, X. Xu, Y. Li, and R. Ma, "Motion-resistant remote imaging photoplethysmography based on the optical properties of skin," IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp.879-891, May 2015.
    [7] W. Wang, B. de Brinker, S. Stuijk, and G. de Haan, "Algorithmic principles of remote-PPG," IEEE transactions on Biomedical Engineering, vol. 64, no. 7, pp.1479-1491, Jul. 2017.
    [8] B. F. Wu et al., "Motion resistant image-photoplethysmography based on spectral peak tracking algorithm," IEEE Access, vol. 6, pp.21621-21634, 2018.
    [9] J. Cheng, X. Chen, L. Xu, and Z. J. Wang, "Illumination variation-resistant video-based heart rate measurement using joint blind source separation and ensemble empirical mode decomposition," IEEE J. Biomed. Health Inform., vol. 21, no. 5, pp.1422-1433, Sep. 2017.
    [10] A. N. Ali and C. Javaan, "Remote optical cardiopulmonary signal extraction with noise artifact removal, multiple subject detection & long-distance," IEEE Access, vol. 6, pp.11573-11595, 2018.
    [11] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. 7th IJCAI, vol. 2, pp.674-679, Aug. 1981.
    [12] R. Y. Huang and L. R. Dung, "A motion-robust contactless photoplethysmography using chrominance and adaptive filtering," IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.1-4, 2015.
    [13] Y. C. Lin and Y. H. Lin, "Step count and pulse rate detection based on the contactless image measurement method," IEEE Transactions on Multimedia, vol. 20, pp.2223-2231, Aug. 2018.
    [14] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable photoplethysmographic sensors-past and present," Electronics, vol. 3, no. 2, pp.282-302, 2014.
    [15] W. Verkruysse, L. O. Svaasand and J. S. Nelson, "Remote plethysmographic imaging using ambient light," Optics Express, vol. 16, pp.21434-21445, Dec. 2008.
    [16] M. Z. Poh, D. J. McDuff and R. W. Picard, "Advancements in noncontact, multiparameter physiological measurements using a webcam," IEEE Trans.on Biomedical Engineering, vol.58, no.1, Jan. 2011.
    [17] W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin," Clinical Chemistry, vol. 37, no. 9, pp.1633-1638, 1991.
    [18] S. B. Park et al., "Remote Pulse Rate Measurement From Near-Infrared Videos," IEEE Signal Processing Letters, vol.25, no.8, pp.1271-1275, Aug. 2018.
    [19] Y. C. Lin, Y. H. Lin, "A study of color illumination effect on the SNR of rPPG signals," in Proc. 39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp.4301-4304, Jul. 2017.
    [20] L. Tarassenko et al., "Non-contact video-based vital sign monitoring using ambient light and auto-regressive models," Physiological measurement, vol. 35, no. 5, pp.807-831, May 2014.
    [21] D. McDuff, S. Gontarek, and R. Picard, "Remote measurement of cognitive stress via heart rate variability," in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp.2957-2960, Aug. 2014.
    [22] L. Terminelli et al., "Photoplethysmography and electrocardiography for real time evaluation of pulse transit time," Fotonica AEIT Ital. Conf. Photonics Technologies, May 2014.
    [23] I. C. Jeong and J. Finkelstein, "Introducing contactless blood pressure assessment using a high speed video camera," Journal of Medical Systems, vol. 40, no. 4, pp.1-10, Apr. 2016.
    [24] H. Qi, Z. J. Wang and C. Miao, "Non-contact driver cardiac physiological monitoring using video data," IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp.418-422, 2015.
    [25] Y. Y. Chen, C. L. Lin, Y. C. Lin, and C. Zhao, "Non-invasive detection of alcohol concentration based on photoplethysmogram signals," IET Image Processing, vol. 12, pp.188-193, Jan. 2018.
    [26] G. R. Bradski, "Computer vision face tracking for use in a perceptual user interface," Intel Technology Journal, pp.1-15, 2nd Quarter, 1998.
    [27] K. Tada, H. Takemura and H. Mizoguchi, "Robust tracking method by meanshift using spatiograms," SICE Annual Conference 2010, pp.1985-1988, 2010.
    [28] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. 7th IJCAI, pp.674-679, 1981.
    [29] "Raspberry Pi 3 Model B+ Website," [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
    [30] P. Viola and M. J. Jones, "Robust real-time face detection," International Journal of Computer Vision, vol. 57, pp.137-154, May 2004.
    [31] W. Wang et al., "The application of improved camshift algorithm in hand tracking," 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), pp.87-90, Dec. 2017.
    [32] Y. H. Lin, C. F. Lin and H. Z. You, "A driver’s physiological monitoring system based on a wearable PPG sensor and a smartphone," International Conference on Security-Enriched Urban Computing and Smart Grid, pp.326-335, 2011.
    [33] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex fourier series," vol. 19, no. 90, pp.297-301, Apr. 1965.
    [34] "Polar H7 Website," [Online]. Available: https://www.polar.com/tw-zh/products/accessories/H7_heart_rate_sensor.
    [35] "Logitech Support and Downloads," [Online]. Available: https://support.logitech.com/zh_tw/product/hd-pro-webcam-c920.
    [36] "arm Developer - Streamline Preformance Analyzer," [Online]. Available:https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/streamline-performance-analyzer.
    [37] "Neon," [Online]. Available: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon.
    [38] "Arm Neon Intrinsics Reference," [Online]. Available: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics.

    無法下載圖示 全文公開日期 2024/08/22 (校內網路)
    全文公開日期 2024/08/22 (校外網路)
    全文公開日期 2024/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE