簡易檢索 / 詳目顯示

研究生: 何琳達
Thalita Maysha Herninda
論文名稱: 錫和鋯硫屬層狀化合物半導體系列之晶體成長、光學及電學特性研究
Crystal Growth, Optical and Electric Properties of Tin and Zirconium Chalcogenides Series SnS1-xSex (0 ≤ x ≤ 1), SnS2(1-x)Se2x (0 ≤ x ≤ 1) and ZrS2-xSex (0 ≤ x ≤ 1) Layered Compounds
指導教授: 何清華
Ching-Hwa Ho
口試委員: 闕郁倫
Yu-Lun Chueh
簡紋濱
Wen-Bin Jian
薛宏中
Hung-Chung Hsueh
李奎毅
Kuei-Yi Lee
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 191
外文關鍵詞: Optoelectronics, Electrical Characterization
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract i Acknowledgements iii Table of Contents iv Symbols and Abbreviations ix List of Figures xii List of Tables xxi Chapter Introduction 1 1.1 Bandgap tuning in semiconductors 2 1.2 Tin monochalcogenides SnS(1-x)Se(x) (0 ≤ x ≤ 1) 4 1.3 Tin dichalcogenides SnS2(1-x)Se2(x) (0 ≤ x ≤ 1) 5 1.4 Zirconium dichalcogenides ZrS(2-x)Se(x) (0 ≤ x ≤ 2)) 6 1.5 Structure and bonding 7 1.5.1 Tin-based chalcogenides SnS(1-x)Se(x) and SnS2(1-x)Se2(x) (0 ≤ x ≤ 1) 7 1.5.2 Zirconium dichalcogenides ZrS(2-x)Se(x) (0 ≤ x ≤ 2) 9 1.6 Research objective 10 Chapter 2. Crystals Growth and Structure Analysis 7 2.1 Single Crystal Growth 7 2.1.1 Chemical Vapor Transport (CVT) 7 2.1.2 Crystal Growth Process 10 2.1.3 Weighing the materials 10 2.1.4 Crystal growth system 12 2.2 Tin Monochalcogenides Series SnS1-xSex (0 ≤ x ≤ 1) 14 2.3 Tin Dichalcogenides Series SnS2(1-x)Se2(x) (0 ≤ x ≤ 1) 15 2.4 Zirconium Series (ZrS2-xSex) 16 2.5 Crystallographic Analysis 18 2.5.1 High Resolution Transmission Electron Microscopy (HRTEM) 18 2.5.2 Powder X-ray Diffraction (XRD) 20 2.5.3 Scanning electron microscopy / energy dispersive X-ray analysis 22 2.5.4 Atomic Force Microscope (AFM) 24 2.5.5 X-ray Photoelectron Spectroscopy (XPS) 25 2.5.6 Micro-Raman Spectroscopy 26 2.6 Optical Measurement Analysis 28 2.6.1 Transmittance Measurement 29 2.6.2 µ-Thermoreflectance Measurement (μ-TR) 31 2.6.3 Temperature dependent semiconductor characteristic analysis 33 2.6.4 Photoconductivity (PC) Measurement 33 2.7 Electrical Measurement Analysis 34 2.7.1 Hot Probe Measurement 34 2.7.2 Voltage-Current (V-I) Measurement 36 2.7.3 Hall Effect Measurement and Van der Pauw Technique 37 2.7.4 Resistivity 4 -Point Measurement 39 2.7.5 Thermoelectric Measurement 42 Chapter 3. Characterization of tin monochalcogenides (SnS1-xSex) with strong in-plane anisotropy 48 3.1 Structure Analysis 48 3.1.1 Crystal structure and morphology 51 3.1.2 High-resolution transmission electron microscopy (HRTEM) 51 3.1.3 Scanning electron microscopy/Energy-dispersive X-ray (SEM/EDX) 54 3.1.4 Micro-Raman Spectroscopy (μ-Raman) 56 3.1.5 Angular-dependent Micro-Raman (µ-Raman) Spectroscopy 61 3.2 Optical Measurement Analysis 68 3.2.1 Transmittance Measurement Analysis 68 3.2.2 µ-Thermoreflectance Measurement Analysis 71 3.2.3 Micro-polarized thermoreflectance (µ-PTR) 73 3.3 Electrical Measurements 79 3.3.1 Hall Effect Measurements 79 3.3.2 Thermoelectric Measurements 82 Chapter 4. Characterization of tin dichalcogenides (SnS2(1-x)Se2(x)) for photodetection applications 91 4.1 Structure analysis 91 4.1.1 Crystal structure and morphology 91 4.1.2 High-resolution transmission electron microscopy (HRTEM) 94 4.1.3 Scanning electron microscopy/ Energy-dispersive X-ray 95 4.1.4 Micro-Raman Spectroscopy 96 4.2 Optical Measurements Analysis 101 4.2.1 Micro-thermoreflectance (μ-TR) easurements 101 4.2.2 Photoconductivity (PC) measurements 105 4.3 Electrical Measurements 107 4.3.1 Voltage-Current (V-I) measurements 107 4.3.2 Resistivity Temperature Dependent measurements 108 4.4 Photochemical Analysis 110 4.4.1 Photocatalytic degradation measurements 110 4.5 Summary 112 Chapter 5. Structure, optical and thermoelectric properties surface-oxidation sensitive layered zirconium dichalcogenides (ZrS2-xSex) 114 5.1 Structure analysis 114 5.1.1 Crystal structure and morphology 114 5.1.2 High-resolution transmission electron (HRTEM) 117 5.1.3 Scanning electron microscopy/ Energy dispersive X-ray spectroscopy 118 5.1.4 Raman Spectroscopy 120 5.2 Optical band gap and valence-band structure 123 5.2.1 Transmittance Measurements 123 5.2.2 Micro-thermoreflectance (μ-TR) measurements 125 5.2.3 X-ray photoelectron spectroscopy (XPS) 126 5.3 Electrical measurements 127 5.4 Summary 132 Chapter 6. Conclusions 134 6.1 Conclusions 134 6.2 Future prospects 137 References 139 Publications 157 Conference Papers 158 Author’s Biography 160

    [1] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science, vol. 353, no. 6298, pp. aac9439. 2016.
    [2] P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. vol. 43, no. 18, pp. 6537–6554, 2014.
    [3] C. H. Ho, H. W. Lee, and C. C. Wu, “Polarization sensitive behavior of the band-edge transitions in ReS2 and ReSe2 layered semiconductors,” J. Phys.: Condens. Matter, vol. 16, no. 32, pp. 5937–5944. 2004.
    [4] C. H. Ho and Z.Z. Liu, “Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy,” Nano Energy, vol. 56, pp. 641–650. 2019.
    [5] C. H. Ho, M. C. Chiou, and T. M. Herninda, “Nanowire Grid Polarization and Polarized Excitonic Emission Observed in Multilayer GaTe,” J. Phys. Chem. Lett., vol. 11, no. 3, pp. 608–617. 2020.
    [6] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, “Single-Layer MoS2 Phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80. 2012.
    [7] J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, “Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics,” Nano Lett., vol. 12, no. 8, pp. 4013–4017. 2012.
    [8] A. Ramasubramaniam, D. Naveh, and E. Towe, “Tunable band gaps in bilayer transition-metal dichalcogenides,” Phys. Rev. B, vol. 84, no. 20, pp. 205325. 2011.
    [9] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, “Synthesis of WS2xSe2–2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett., vol. 16, no. 1, pp. 264–269. 2016.
    [10] L. Huang, N. Huo, Y. Li, H. Chen, J. Yang, Z. Wei, J. Li, S.S. Li, “Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure,” J. Phys. Chem. Lett., vol. 6, no. 13, pp. 2483–2488. 2015.
    [11] Z. Wang, P. Liu, Y. Ito, S. Ning, Y. Tan, T. Fujita, A. Hirata, M. Chen, “Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps,” Sci Rep, vol. 6, no. 1, pp. 21536. 2016.
    [12] C.H. Ho, W.Y. Lin, L.C. Chao, K.Y. Lee, J. Inagaki, and H.C. Hsueh, “Study of structural, thermoelectric, and photoelectric properties of layered tin monochalcogenides SnX (X= S, Se) for energy application,” ACS Appl. Energy Mater. vol. 3, no. 5, pp. 4896–4905, 2020.
    [13] T. Yang, B. Zheng, Z. Wang, T. Xu, C. Pan, J. Zou, X. Zhang, Z. Qi, H. Liu, Y. Feng, W. Hu, “Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions,” Nat. Commun. vol. 8, no. 1, pp. 1906, 2017.
    [14] T. M. Herninda and C.H. Ho, “Optical and Thermoelectric Properties of Surface-Oxidation Sensitive Layered Zirconium Dichalcogenides ZrS2−xSex (x = 0, 1, 2) Crystals Grown by Chemical Vapor Transport,” Crystals, vol. 10, no. 4, pp. 327, 2020.
    [15] A. Chaves, J. G. Azadani, H. Alsalman, D. R. Da Costa, R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, “Bandgap engineering of two-dimensional semiconductor materials,” NPJ 2D Mater. Appl. vol. 4, no. 1, pp. 29, 2020.
    [16] L. A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, “Synthesis, Characterization, and Electronic Structure of Single- Crystal SnS, Sn2S3, and SnS2,” Chem. Mater, vol. 25, no. 24, pp. 4908-4916, 2013.
    [17] C. Rana, S. R. Bera, and S. Saha, “Growth of SnS nanoparticles and its ability as ethanol gas sensor,” J. Mater. Sci. Mater. Electron. vol. 30, pp. 2016–2029, 2019.
    [18] A. S. Rodin, L. C. Gomes, A. Carvalho, and A. H. Castro Neto, “Valley physics in tin (II) sulfide,” Phys. Rev. B, vol. 93, no. 4, pp. 045431, 2016.
    [19] N. Maity, P. Srivastava, H. Mishra, R. Shinde, and A. K. Singh, “Anisotropic Interlayer Exciton in GeSe/SnS van der Waals Heterostructure,” J. Phys. Chem. Lett. vol. 12, no.7, pp. 1765-1771, 2021.
    [20] M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, and N. A. El-Ghamaz, “Optical properties of thermally evaporated SnS thin films,” Opt. Mater. vol. 20, no. 3, pp. 159–170, 2002.
    [21] A. Morales-Acevedo, “Thin film CdS/CdTe solar cells: Research perspectives,” Solar Energy, vol. 80, no. 6, pp. 675–681, 2006.
    [22] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature, vol. 508, no. 7496, pp. 373–377, 2014.
    [23] A. Wangperawong, S. M. Herron, R. R. Runser, C. Hägglund, J. T. Tanskanen, H. B. R. Lee, B. M. Clemens, S. F. Bent, “Vapor transport deposition and epitaxy of orthorhombic SnS on glass and NaCl substrates,” Appl. Phys. Lett., vol. 103, no. 5, 2013.
    [24] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, “Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS,” Appl. Phys. Lett., vol. 100, no. 3, 2012.
    [25] H. S. Im, Y. Myung, Y. J. Cho, C. H. Kim, H. S. Kim, S. H. Back, C. S. Jung, D. M. Jang, Y. R. Lim, J. Park, J. P. Ahn, “Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals,” RSC Adv. vol. 3, no. 26, pp. 10349–10354, 2013.
    [26] K. T. Ramakrishna Reddy, N. Koteswara Reddy, and R. W. Miles, “Photovoltaic properties of SnS based solar cells,” Sol. Energy Mater Sol. Cells, vol. 90, no. 18–19, pp. 3041–3046, 2006.
    [27] C. H. Ho and J. X. Li, “Polarized Band-Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS,” Adv. Opt. Mater., vol. 5, no. 3, pp. 1600814, 2017.
    [28] H. C. Hsueh, J. X. Li, and C. H. Ho, “Polarization photoelectric conversion in layered GeS,” Adv. Optical Mater, vol. 6, no. 4, pp. 1701194, 2018.
    [29] Q. Ma, G. Ren, K. Xu, and J. Z. Ou, “Tunable Optical Properties of 2D Materials and Their Applications,” Adv. Optical Mater., vol. 9, no. 2, pp. 2001313, 2021.
    [30] Z. Zhang, J. Yang, K. Zhang, S. Chen, F. Mei, and G. Shen, “Anisotropic photo response of layered 2D SnS-based near infrared photodetectors,” J. Mater. Chem. C, vol. 5, no. 43, pp. 11288–11293, 2017.
    [31] W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang, “Tin Selenide (SnSe): Growth, Properties, and Applications,” Adv. Sci., vol. 5. No. 4, pp. 1700602, 2018.
    [32] Z. Huang, D. Wang, C. Li, J. Wang, G. Wang, and L.D. Zhao, “Improving the thermoelectric performance of p-type PbSe via synergistically enhancing the Seebeck coefficient and reducing electronic thermal conductivity,” J. Mater. Chem. A, vol. 8, no. 9, pp. 4931–4937, 2020.
    [33] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, “GeTe Thermoelectrics,” Joule, vol. 4, no. 5, pp. 986–1003, 2020.
    [34] X. Luo, J. He, K. Long, J. Wang, N. Liu, and T. Qiu, “A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs,” J. Appl. Phys. vol. 115, no. 24, p. 244306, 2014.
    [35] L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, C., “Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe” Science, vol. 35, no. 6269, pp.141-144, 2016.
    [36] Y. M. Han, J. Zhao, M. Zhou, X. X. Jiang, H. Q. Leng, and L.-F. Li, “Thermoelectric performance of SnS and SnS–SnSe solid solution,” J. Mater. Chem. vol. 3, no. 8, pp. 4555–4559, 2015.
    [37] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin, “Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. vol. 24, no. 17, pp. 2320–2325, 2012.
    [38] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nature nanotechnol, vol. 9, no. 9, pp. 682–686, 2014.
    [39] Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, “Semiconductors: Growth of Large-Area 2D MoS2(1-x)Se2x Semiconductor Alloys (Adv. Mater. 17/2014),” Adv. Mater. vol. 26, no. 17, pp. 2763–2763. 2014.
    [40] S. Yang, Y. Li, X. Wang, N. Huo, J. B. Xia, S. S. J. Li, “High performance few-layer GaS photodetector and its unique photo-response in different gas environments,” Nanoscale, vol. 6, no. 5, pp. 2582–2587, 2014.
    [41] C. A. Chuang, M. H. Lin, B. X. Yeh, and C. H. Ho, “Curvature-dependent flexible light emission from layered gallium selenide crystals,” RSC Adv. vol. 8, no. 5, pp. 2733–2739, 2018.
    [42] C. H. Ho and Y. J. Chu, “Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals,” Adv. Opt. Mater. vol. 3, no. 12, pp. 1750–1758, 2015.
    [43] R. B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moore, B. Yu, “Extraordinary photoresponse in two-dimensional In2Se3 nanosheets,” ACS nano, vol. 8, no. 1, pp. 514–521, 2014.
    [44] T. M. Herninda, C. E. Hsu, H. C. Hsueh, and C. H. Ho, “Structural, opto-electrical, and band-edge properties of full-series multilayer SnS1-xSex (0≤ x≤ 1) compounds with strong in-plane anisotropy,” Mater. Today Adv. vol. 18, pp. 100379, 2023.
    [45] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T. Zhai, “Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors,” Adv. Mater., vol. 27, no. 48, pp. 8035–8041. 2015.
    [46] X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, “Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction,” J. Am. Chem. Soc, vol. 139, no. 49, pp. 18044–18051, 2017.
    [47] L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping‐Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angewandte Chemie, vol. 131, no. 20, pp. 6833–6837, 2019.
    [48] C. Guo, Z. Tian, Y. Xiao, Q. Mi, and J. Xue, “Field-effect transistors of high-mobility few-layer SnSe2,” Appl. Phys. Lett. vol. 109, no. 20, p. 203104, 2016.
    [49] A. R. Shelke, H. T. Wang, J. W. Chiou, I. Shown, A. Sabbah, K. H. Chen, S. A. Teng, I. A. Lin, C. C. Lee, H. C. Hsueh, Y. H. Liang, “Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement,” Small, vol. 18, no. 2, p. 2105076, 2022.
    [50] C. H. De Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason, G. Reid, “Highly Selective Chemical Vapor Deposition of Tin Diselenide Thin Films onto Patterned Substrates via Single Source Diselenoether Precursors,” Chem. Mater., vol. 24, no. 22, pp. 4442–4449. 2012.
    [51] P. A. Fernandes, M. G. Sousa, P. M. Salome, J. P. Leitão, and A. da Da Cunha, “Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors,” Cryst. Eng. Comm, vol. 15, no. 47, pp. 10278–10286, 2013.
    [52] M. H. Lin, P. S. Parasuraman, and C. H. Ho, “The study of near-band-edge property in oxygen-incorporated ZnS for acting as an efficient crystal photocatalyst,” ACS Omega, vol. 3, no. 6, pp. 6351–6359, 2018.
    [53] L. E. Conroy and K. C. Park, “Electrical properties of the Group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide,” Inorg. Chem., vol. 7, no. 3, pp. 459–463, 1968.
    [54] M. Abdulsalam and D. P. Joubert, “Optical spectrum and excitons in bulk and monolayer MX2 (M=Zr, Hf; X=S, Se),” Phys. Status Solidi B, vol. 253, no. 4, pp. 705–711, 2016.
    [55] R. B. Murray, R. A. Bromley, and A. D. Yoffe, “The band structures of some transition metal dichalcogenides. II. Group IVA; octahedral coordination,” J. Phys. C: Solid State Phys., vol. 5, no. 7, pp. 746–758, 1972.
    [56] Y. Zhu, X. Wang, M. Zhang, C. Cai, and L. Xie, “Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride,” Nano Res. vol. 9, pp. 2931–2937, 2016.
    [57] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. vol. 18, no. 73, pp. 193–335, 1969.
    [58] D. Qin, X. J. Ge, G. Ding, G. Gao, and J. T. Lü, “Strain-induced thermoelectric performance enhancement of monolayer ZrSe2,” RSC Adv. vol. 7, no. 75, pp. 47243–47250, 2017.
    [59] J. K. Ellis, M. J. Lucero, and G. E. Scuseria, “The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory,” Appl. Phys. Lett., vol. 99, no. 26, pp. 261908, 2011.
    [60] Y. Li, J. Kang, and J. Li, “Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations,” RSC Adv. vol. 4, no. 15, pp. 7396, 2014.
    [61] H. Y. Lv, W. J. Lu, D. F. Shao, H. Y. Lu, and Y. P. Sun, “Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer,” J. Mater. Chem. C, vol. 4, no. 20, pp. 4538–4545, 2016.
    [62] F. Khan, H. U. Din, S. A. Khan, G. Rehman, M. Bilal, C. V. Nguyen, I. Ahmad, L. Y. Gan, B. Amin, “Theoretical investigation of electronic structure and thermoelectric properties of MX2 (M=Zr, Hf; X=S, Se) van der Waals heterostructures,” J. Phys. Chem. Solids, vol. 126, pp. 304–309, 2019.
    [63] B. Hou, S. H. Jung, J. Zhang, Y. Hong, B. S. Kim, J. I. Sohn, E. K. Lee, B. L. Choi, D. Whang, S. Cha, J. M. Kim, “Growth of quantum dot coated core-shell anisotropic nanowires for improved thermal and electronic transport,” Appl. Phys. Lett. vol. 114, no. 24, p. 243104, 2019.
    [64] S. Yazdani and M. T. Pettes, “Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches,” Nanotechnology, vol. 29, no. 43, p. 432001, 2018.
    [65] H. J. Scheel, “The development of crystal growth technology in Crystal Growth Technology”, Chichester (UK): John Wiley & Sons, pp. 1–14, 2003.
    [66] Q. Wang, W. Yu, X. Fu, C. Qiao, C. Xia, and Y. Jia, “Electronic and magnetic properties of SnSe monolayers doped by Ga, In, As, and Sb: a first-principles study,” Phys. Chem. Chem. Phys. vol. 18, no. 11, pp. 8158–8164, 2016.
    [67] A. Walsh and G. W. Watson, “Influence of the anion on lone pair formation in Sn (II) monochalcogenides: A DFT study,” J. Phys. Chem. B. vol. 109, no. 40, pp. 18868–18875, 2005.
    [68] B. Pałosz, W. Steurer, and H. Schulz, “Refinement of SnS2 polytypes 2H, 4H and 18R,” Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. vol. 46, no. 4, pp. 449–455, 1990.
    [69] T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, “Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS,” ACS Nano, vol. 8, no. 8, pp. 8323–8333, 2014.
    [70] J. H. Kim, S. J. Yun, H. S. Lee, J. Zhao, H. Bouzid, and Y. H. Lee, “Plasma-induced phase transformation of SnS2 to SnS,” Sci. Rep. vol. 8, no. 1, pp. 10284, 2018.
    [71] D. L. Greenaway and R. Nitsche, “Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure”. J. Phys. Chem. Solids. vol. 26, no. 9, pp.1445-1458. 1965.
    [72] P. A. Lee, G. Said, R. Davis, and T. H. Lim, “On the optical properties of some layer compounds,” J. Phys. Chem. Solids. vol. 30, no. 12, pp. 2719–2729, 1969.
    [73] H. Schafer, “Chemical transport reactions”, Academic Press, New York (US), 1964.
    [74] C. H. Ho, “Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy,” Opt. Express, vol. 13, no. 1, p. 8-19, 2005.
    [75] Williams, D.B., Carter, C.B, “The transmission electron microscope”. Springer, New York (US), 1996.
    [76] Inkson, B.J., “Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization”, Woodhead Publishing, Sawston (UK), 2016.
    [77] R. F. Egerton,” Physical principles of electron microscopy.” Springer, New York (US). 2005.
    [78] A. A. Bunaciu, E. G. UdriŞTioiu, and H. Y. Aboul-Enein, “X-ray diffraction: instrumentation and applications,” Crit. Rev. Anal. Chem. vol. 45, no. 4, pp. 289–299, 2015.
    [79] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B. vol. 35, no. 17, pp. 9085–9090. 1987.
    [80] C. G. Pope, “X-ray diffraction and the Bragg equation,” J. Chem. Educ. vol. 74, no. 1, p. 129, 1997.
    [81] C. Hammond, “The basics of crystallography and diffraction”, Oxford University Press, Oxford (UK). 2015.
    [82] A. Guinier, “X-ray diffraction in crystals, imperfect crystals, and amorphous bodies”. Courier Corporation. Massachusetts (US), 1994.
    [83] W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, “Fundamentals of scanning electron microscopy (SEM),” Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer, New York (US), 2007.
    [84] D. C. Bell, and A. J. Garratt-Reed, ’”Energy dispersive X-ray analysis in the electron microscope.” vol. 49. Garland Science, New York (US), 2003.
    [85] B. K. Teo, “EXAFS: basic principles and data analysis.” Springer, New York (US) 2012.
    [86] F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. vol. 75, no. 3, p. 949, 2003.
    [87] J. F. Watts, John F., and J. Wolstenholme.” An introduction to surface analysis by XPS and AES”. John Wiley & Sons, Inc. New York (US), 2019.
    [88] S. Perkowitz, “Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy.” Elsevier, Amsterdam (Netherland), 2012.
    [89] P. R. G. D. J. Graves and D. Gardiner, “Practical raman spectroscopy”. Springer, New York (US). 1989.
    [90] J. I. Pankove, “Optical processes in semiconductors” Courier Corporation. Massachusetts (US).1975.
    [91] C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum. vol. 75, no. 4, pp. 1098–1102, 2004.
    [92] C. H. Ho, Y. S. Huang, J. L. Chen, T. E. Dann, and K.-K. Tiong, “Electronic structure of ReS2 and ReSe2 from first-principles calculations, photoelectron spectroscopy, and electrolyte electro reflectance,” Phys. Rev. B. vol. 60, no. 23, p. 15766, 1999.
    [93] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, no. 1, pp. 149–154, 1967.
    [94] K. P. O’donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. vol. 58, no. 25, pp. 2924–2926, 1991.
    [95] R. A. Street, K. W. Song, J. E. Northrup, and S. Cowan, “Photoconductivity measurements of the electronic structure of organic solar cells,” Phys. Rev. B. vol. 83, no. 16, p. 165207, 2011.
    [96] C. H. Ho, “Ga2Se3 Defect Semiconductors: The Study of Direct Band Edge and Optical Properties,” ACS Omega, vol. 5, no. 29, pp. 18527–18534, 2020.
    [97] G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, “Hot-Probe method for evaluation of impurities concentration in semiconductors,” Microelectronics J. vol. 37, no. 9, pp. 910–915, 2006.
    [98] J. de Boor and E. Müller, “Data analysis for Seebeck coefficient measurements,” Rev. Sci. Instrum. vol. 84, no. 6, pp. 065102, 2013.
    [99] O. Philips’Gloeilampenfabrieken, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep, vol. 13, no. 1, pp. 1–9, 1958.
    [100] D. K. Schroder, “Semiconductor material and device characterization”. John Wiley & Sons, Inc. New York (US), 2015.
    [101] M. E. Cage, K. Klitzing, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, D. J. Thouless, “The quantum Hall effect.” Springer, New York (US), 2012.
    [102] E. H. Hall, “On a new action of the magnet on electric currents in American Journal of Mathematics,” John Hopkins University Press. Maryland (US). 1879.
    [103] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, “New directions for low‐dimensional thermoelectric materials,” Adv. Mater. vol. 19, no. 8, pp. 1043–1053, 2007.
    [104] A. Shakouri, “Recent developments in semiconductor thermoelectric physics and materials” Annu. Rev. Mater. Res., vol. 41, pp. 399-431, 2011.
    [105] Sootsman, Joseph R., Duck Young Chung, and Mercouri G. Kanatzidis, “New and old concepts in thermoelectric materials.” Angew. Chem. Int. Ed. vol. 48, no. 46, pp. 8816-8639, 2009.
    [106] V. Q. Nguyen, J. Kim, and S. Cho, “A Review of SnSe: Growth and Thermoelectric Properties,” J. Korean Phys. Soc., vol. 72, no. 8, pp. 841–857, 2018.
    [107] M. Li et al., “Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes,” RSC Adv. vol. 7, no. 77, pp. 48759–48765, 2017.
    [108] T. Basak, M. N. Rao, and S. L. Chaplot, “Study of one-mode, two-mode and three-mode phonon behavior in mixed zinc blende alloys,” Phys. B: Condens. Matter. vol. 407, no. 22, pp. 4478–4484, 2012.
    [109] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. De Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, “Quantum ESPRESSO toward the exascale,” J. Chem. Phys. vol. 152, no. 15, p. 154105, 2020.
    [110] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, “BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures,” Comput. Phys. Commun. vol. 183, no. 6, pp. 1269–1289, 2012.
    [111] C. H. Ho, T. Y. Hsu, and L. C. Muhimmah, “The band-edge excitons observed in few-layer NiPS3,” NPJ 2D Mater. Appl. vol. 5, no. 1, pp. 8, 2021.
    [112] F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng. R Rep. vol. 10, no. 7–8, pp. xv–374, 1993.
    [113] C. Barone, F. Romeo, S. Pagano, C. Attanasio, G. Carapella, C. Cirillo, A. Galdi, G. Grimaldi, A. Guarino, A. Leo, A. Nigro, “Nonequilibrium fluctuations as a distinctive feature of weak localization,” Sci. Rep. vol. 5, no. 1, p. 10705, 2015.
    [114] M. Bele, K. Stojanovski, P. Jovanovič, L. Moriau, G. Koderman Podboršek, J. Moškon, P. Umek, M. Sluban, G. Dražič, N. Hodnik, M. Gaberšček, “Towards Stable and Conductive Titanium Oxynitride High‐Surface‐Area Support for Iridium Nanoparticles as Oxygen Evolution Reaction Electrocatalyst,” ChemCatChem, vol. 11, no. 20, pp. 5038–5044, 2019.
    [115] K. Kuroki and R. Arita, “‘Pudding Mold’ Band Drives Large Thermopower in NaxCoO2,” J. Phys. Soc. Jpn., vol. 76, no. 8, p. 083707, 2007.
    [116] P. C. Wei, S. Bhattacharya, Y. F. Liu, F. Liu, J. He, Y. H. Tung, C. C. Yang, C. R. Hsing, D. L. Nguyen, C. M. Wei, M. Y. Chou, “Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe,” ACS Omega, p. 9, 2019.
    [117] J. Yu, C. Y. Xu, Y. Li, F. Zhou, X. S. Chen, P. A. Hu, L. Zhen, “Ternary SnS2–xSex Alloys Nanosheets and Nanosheet Assemblies with Tunable Chemical Compositions and Band Gaps for Photodetector Applications,” Sci. Rep. vol. 5, no. 1, p. 17109, 2015.
    [118] D. Y. Lin, H. P. Hsu, C. F. Tsai, C. W. Wang, and Y. T. Shih, “Temperature Dependent Excitonic Transition Energy and Enhanced Electron-Phonon Coupling in Layered Ternary SnS2-xSex Semiconductors with Fully Tunable Stoichiometry,” Molecules, vol. 26, no. 8, p. 2184, 2021.
    [119] J. M. Gonzalez and I. I. Oleynik, “Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials,” Phys. Rev. B, vol. 94, no. 12, p. 125443, 2016.
    [120] Q. Feng Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, F. and C. Jin. “Growth of Large-Area 2D MoS2(1-x)Se2x Semiconductor Alloys,” Adv. Mater. vol. 26, no. 17, pp. 2648–2653, 2014.
    [121] Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang, B. Xiang,“Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS2(1-x)Se2x with a Tunable Band Gap,” Adv. Mater. vol. 27, no. 32, pp. 4732–4738, 2015.
    [122] A. S. Golub, Y. V. Zubavichus, Y. L. Slovokhotov, and Y. N. Novikov, “Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds,” Russ. Chem. Rev., vol. 72, no. 2, pp. 123–141, 2003.
    [123] L. Roubi and C. Carlone, “Resonance Raman spectrum of HfS2 and ZrS2,” Phys. Rev. B, vol. 37, no. 12, pp. 6808–6812, 1988.
    [124] S. Mañas-Valero, V. García-López, A. Cantarero, and M. Galbiati, “Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers,” Appl. Sci. vol. 6, no. 9, pp. 264, 2016.
    [125] R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, H. G. Xing,“Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy,” ACS Nano, vol. 8, no. 1, pp. 986–993, 2014.
    [126] M. Moustafa, T. Zandt, C. Janowitz, and R. Manzke, “Growth and band gap determination of the ZrSxSe2−x single crystal series,” Phys. Rev. B, vol. 80, no. 3, pp. 035206, 2009.
    [127] A. V. Kolobov and J. Tominaga, “Two-dimensional transition-metal dichalcogenides”, vol. 239. Springer, New York (US), 2016.
    [128] G. Yumnam, T. Pandey, and A. K. Singh, “High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study,” Chem. Phys. vol. 143, no. 23, pp. 234704, 2015.
    [129] M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, E. Pop, “HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides,” Sci. Adv. vol. 3, no. 8, pp. e1700481, 2017.
    [130] K. R. Patel, “Thermoelectric power measurements of zirconium sulphoselenide single crystals,” Int. J. Phys. Math. Sci, vol. 2, pp. 74–85, 2012.
    [131] S. D. Guo, Y. F. Li, and X. S. Guo, “Predicted Janus monolayer ZrSSe with enhanced n-type thermoelectric properties compared with monolayer ZrS2,” Comput. Mater. Sci., vol. 161, pp. 16–23, 2019.
    [132] G. Ding, G. Y. Gao, Z. Huang, W. Zhang, and K. Yao, “Thermoelectric properties of monolayer MSe2 (M= Zr, Hf): low lattice thermal conductivity and a promising figure of merit,” Nanotechnology. vol. 27, no. 37, p. 375703, 2016.

    無法下載圖示 全文公開日期 2027/07/30 (校內網路)
    全文公開日期 2028/07/30 (校外網路)
    全文公開日期 2028/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE