簡易檢索 / 詳目顯示

研究生: 陳浚明
Chun-Ming Chen
論文名稱: 新冠肺炎對股價指數波動性動態平滑轉換之影響
The Impacts of COVID-19 Pandemic on the Smooth Transition Dynamics of Stock Index Volatilities
指導教授: 劉代洋
Day-Yang Liu
口試委員: 林進財
Chin-Tsai Lin
鄭仁偉
Jen-Wei Cheng
謝劍平
Joseph C.P. Shieh
盧文民
Wen-Min Lu
張光第
Guang-Di Chang
劉培林
Pei-Leen Liu
學位類別: 博士
Doctor
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 新冠肺炎平滑轉換GARCH模型波動性結構轉變亞洲四小龍
外文關鍵詞: COVID-19, ST-GARCH model, Volatility, Structure change, Four Asian Tigers
相關次數: 點閱:213下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的主要目的在於使用平滑轉換GARCH模型探討新冠肺炎事件對股市動態波動性結構之影響。考慮結構改變的調整方法來處理隱藏在波動性變數資料產生過程的結構轉變現象是相當直觀的。而且使用平滑轉換方法進行估計可以獲取在估計狀態轉換的行程中不會使用到額外觀察訊息的優勢。研究期間自2015年4月至2020年7月。研究標的包含臺股指數市場中包含電子類股等11類股指數資料以及臺灣周邊區域包含亞洲四小龍和日本股票市場指數資料。
    本文包含兩個實證研究。在第一個實證研究部分中,我們證實新冠肺炎事件確實改變了臺灣主要類股市場中多數類股指數波動性之結構。透過各類股指數波動性之轉換函數估計值,我們得知除了旅遊類股指數和航運類股指數外,其餘多數類股指數波動性轉換的反應皆發生在新冠肺炎事件之前。此外,轉換函數之估計值亦說明除了貿易類股指數波動性外,其餘類股指數波動性皆存在U型態的結構轉換形式。此外,我們可以藉由所建構的模型來標示波動性和相關性變數資料產生過程的結構轉變時間點。在第二部分的實證研究中,我們證實新冠肺炎事件確實對亞洲四小龍及日本股票市場指數波動性造成結構轉變之影響。其中,我們亦計算出這些國家股價指數波動性的轉換函數估計值,並發現除了韓國和日本兩個國家外,其餘國家股價指數波動性的結構轉變皆發生在新冠肺炎事件發生之前。此外,透過轉換函數的估計結果,我們亦得知所有國家股價指數波動性皆呈現U型的結構轉換形式。而本研究亦透由平滑轉換GARCH模型的估計結果,估算出包含類股指數及股價指數研究標的之動態波動性轉換的實際發生時點。


    The main purpose of this dissertation is to adopt the smooth transition GARCH model to depict the influences of the Novel Coronavirus Disease (COVID-19) on the dynamic volatility structure for stock market. It is intuitively to consider the regime change adjustment method to address the structural shift embedded in the data generating process for volatility process. In addition, the benefit of hiring smooth transition method is that there is no feedback from the observed information to the switching-process. The data source span the period from April 2015 to July 2020. We collect 11 broad-based indices from TWSE and the stock market index of the Four Asian Tigers and Japan.
    There are two empirical topics in this study. In the first section, our empirical results show that the episode of the COVID-19 switches the volatility structure for the most of indices volatilities in Taiwan. We also obtain the transition function for all indices volatilities and catch that their regime adjustment processes start prior to the outbreak of COVID-19 pandemic in Taiwan except two industrial sub-indices, the tourism index and the shipping and transportation index. Finally, the estimated transition functions show that the broad-based indices volatilities have U-shaped patterns of structure changes except the trading and consumer goods sub-indices. In the second section, the empirical results show that the shocks of the COVID-19 change the dynamic volatility structure for all stock market indices for the Four Asian Tigers and Japan. Moreover, we acquire the transition function for all stock market index volatilities and find out that most of their regime adjustment processes start following the outbreak of COVID-19 pandemic in the Four Asian Tigers except South Korea and Japan. Additionally, the estimated transition functions illustrate that the stock market index volatilities contain U-shaped patterns of structure changes for all countries. This article also computed the corresponding calendar dates of structure change about dynamic volatility pattern.

    Abstract i Acknowledgements iii List of Figures vi List of Tables vii CHAPTER 1: Introduction 1 CHAPTER 2: Literature Review 5 CHAPTER 3: Methodology 8 3.1 The related GARCH Models 8 3.2 The Smooth Transition Method and ST-GARCH model 10 3.3 Data Source 13 CHAPTER 4: Empirical Results 14 4.1 Essay One: Impacts of COVID-19 Pandemic on the Smooth Transition Dynamics of Broad-based Indices Volatilities in Taiwan 14 4.2 Empirical Analysis of Broad-based Indices Volatilities in Taiwan 16 4.3 Concluding Remarks for Essay One 33 4.4 Essay Two: The Impacts of COVID-19 Pandemic on the Smooth Transition Dynamics of Stock Market Index Volatilities for the Four Asian Tigers and Japan 34 4.5 Empirical Analysis of Stock Market Index Volatilities for the Four Asian Tigers and Japan 37 4.6 Concluding Remarks for Essay Two 51 CHAPTER 5: Conclusions 53 5.1 Summaries of the Two Essays 53 5.2 Potential Future Work 54 5.3 Limitation of this Study 55 References 56

    References
    [1]Anderson, H. M., K. Nam, and F. Vahid (1999), “Asymmetric nonlinear smooth transition GARCH models,” P. Rothman (ed.), Nonlinear time series analysis of economic and financial data, Kluwer, Boston, 191-207.
    [2]Baldwin, R. and E. Tomiura (2020), “Thinking ahead about the trade impact of COVID-19,” in Economics in the Time of COVID-19, CEPR Press.
    [3]Berben R. P. and W. J. Jansen (2005), “Comovement in international equity markets: a sectoral view.” Journal of International Money and Finance, 24, 832-857.
    [4]Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, 31, 307-327.
    [5]Chan, F., and M. McAleer (2002), “Maximum likelihood estimation of STAR andSTAR-GARCH models: theory and Monte Carlo evidence,” Journal of Applied Econometrics, 17, 509-534.
    [6]Cheikh, N. B., Y. B. Zaied, and J. Chevallier (2020), “Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models,” Finance Research Letters, 35, 101293.
    [7]Chen, C. W. S., Z. Wang, S. Sriboonchitta, and S. Lee (2017), “Pair trading based on quantile forecasting of smooth transition GARCH models,” The North American Journal of Economics and Finance, 39, 38-55.
    [8]Chou, R. Y., C. C. Wu, and Y. N. Yang (2012), “The Euro’s impacts on the smooth transition dynamics of stock market volatilities,” Quantitative Finance, 12, 169-179.
    [9]Ding, Z., C.W.J. Granger, and R.F. Engle (1993), “A long memory property of stock market returns and a new model,” Journal of Empirical Finance, 1, 83-106.
    [10]Engle, R.F. (1982), “Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation,” Econometrica, 50, 987-1008.
    [11]Engle, R.F. (1990), “Stock market volatility and the crash of 87,” Review of Financial Studies, 3, 103-106.
    [12]Engle, R.F. and G.J. Lee (1999), “A permanent and transitory component model of stock return volatility,” in: Engle, R.F., White, H. (Eds.), Cointegration, causality, and forecasting: A festschrift in honor of Clive W.J. Granger. Oxford, Oxford University Press, pp. 475-497.
    [13]Engle, R.F., D.M. Lilien, and R.P. Robins (1987), “Estimating time varying risk premia in the term structure: the ARCH-M model,” Econometrica, 55, 391-407.
    [14]Fornari, F. and A. Mele (1997), “Sign- and volatility-switching ARCH models: theory and applications to international stock markets,” Journal of Applied Econometrics, 12, 49-65.
    [15]Glosten, L.R., R. Jagannathan, and D.E. Runkle (1993), “On the relation between the expected value of the volatility of the nominal excess return on stocks,” Journal of Finance, 48, 1779-1801.
    [16]González-Rivera, G. (1998), “Smooth transition GARCH models,” Studies in Nonlinear Dynamics and Econometrics, 3, 161-178.
    [17]Granger, C. W. J. and T. Teräsvirta (1993), “Modeling nonlinear economic relationships,” New York: Oxford University Press.
    [18]Hagerud, G. E. (1997), “A new non-linear GARCH model,” EFI Economic Research Institute, Stockholm.
    [19]Hamilton, J.D. (1989), “A new approach to the economic analysis of nonstationary time series and the business cycle.” Econometrica, 57, 357-384.
    [20]Hamilton, J.D. (1990), “Analysis of time series subject to changes in regime.” Journal of Econometrics, 45, 39-70.
    [21]Khemiri, R. (2011), “The smooth transition GARCH model: application to international stock indexes,” Applied Financial Economics, 21, 555-562.
    [22]Lanne, M. and P. Saikkonen (2005), “Nonlinear GARCH models for highly persistent volatility,” Econometrics Journal, 8, 765-768.
    [23]Lee, Y.H., H.C. Liu, and C.L. Chiu (2008), “Nonlinear basis dynamics for the Brent crude oil markets and behavioral interpretation: A STAR-GARCH approach,” International Research Journal of Finance and Economics, 14, 51-60.
    [24]Lee, L. and R. P. Degennaro (2000), “Smooth transition ARCH models: estimation and testing,” Review of Quantitative Finance and Accounting, 15, 5-20.
    [25]Lin, C. F. J. and T. Teräsvirta (1994), “Testing the constancy of regression parameters against continuous structural change,” Journal of Econometrics, 62, 211-228.
    [26]Lundbergh, S. and T. Teräsvirta (2002), “Evaluating GARCH models,” Journal of Econometrics, 110, 417-435.
    [27]Medeiros, M. C. and A. Veiga (2009), “Modeling multiple regimes in financial volatility with a flexible coefficient GARCH(1,1) model,” Econometric Theory, 25, 117-161.
    [28]Narayan, P. K., Q. Gong, and H. J. A. Ahmed (2021), “Is there a pattern in how COVID-19 has affected Australia’s stock returns?” Applied Economics Letters, 1-4.
    [29]Nelson, D.B. (1991), “Conditional heteroskedasticity in asset returns: a new approach,” Econometrica, 59, 347-370.
    [30]Oyewale A.M., S.D. Kehinde, and K. Phazamile (2013), “Smooth transition autoregressive-GARCH model in forecasting non-linear economic time series data,” Journal of Statistical and Econometric Methods, 2, 11-19.
    [31]Reitz, S. and F. Westerhoff (2007), “Commodity price cycles and heterogeneous speculators: a STAR-GARCH model,” Empirical Economics, 33, 231-244.
    [32]Schwert, G. W. (1989), “Why does stock market volatility change over time,” Journal of Finance, 45, 1129-1155.
    [33]Sentana, E. (1995), “Quadratic ARCH models,” Review of Economic Studies, 62, 639-661.
    [34]Sharma, S. S. (2020), “A note on the Asian market volatility during the COVID-19 pandemic,” Asian Economics Letters, 1.
    [35]Taylor, S. (1986), “Modelling financial time series,” Wiley, New York.
    [36]Teresiene, D., G. K. –Staniuleniene, and R. Kanapickiene (2021), “Sustainable economic growth support through credit transmission channel and financial stability: in the context of the COVID-19 pandemic,” Sustainability, 13, 2692.
    [37]Zakoïan, J.M. (1994), “Threshold heteroskedastic models,” Journal of Economic Dynamics and control, 18, 931-955.
    [38]Zhang, D., M. Hu, and Q. Ji (2020), “Financial markets under the global pandemic of COVID-19,” Finance Research Letters, 36, 101528.

    QR CODE