簡易檢索 / 詳目顯示

研究生: 陳鴻運
Hung-yun Chen
論文名稱: 擋土牆背水平排水管之排水容量與滲流壓力分佈模式之研究
Studies of Drainage Capacities and Seepage Pressure Distribution for Horizontal Drain Pipes behind a Retaining Wall
指導教授: 陳志南
Chee-Nan Chen
口試委員: 陳景文
CHING-WEN CHEN
林志森
CHIH-SEN LIN
歐章煜
CHANG-YU OU
林宏達
HUNG-TA LIN
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 165
中文關鍵詞: 水平排水管擋土牆特徵水壓面滲透係數濾層
外文關鍵詞: horizontal drain pipe, critical iso-pressure head surface
相關次數: 點閱:175下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為防範地下水所引致開挖或回填邊坡的破壞,工程上經常採用設置擋土牆和埋設水平排水管的方式藉以達成安全穩定的需求。然而實務上,配置水平排水管的擋土牆其滲流壓力分佈屬於三向度變化,包括各項尺寸因子所對應之最大排水量均尚無簡易之評估模式。因此設計上,對於排水管的尺寸或是多管情況下的數量及配置間距難以評估。
研究藉由砂箱試驗的驗證,確認三維滲流數值模型GMS與FEMWATER模組以及將排水材料視同孔隙介質的模擬方式能夠合理的反應集水模式、材料內外的水壓分佈和單位時間排水量。繼而模擬配置單支水平排水管的情況,得以分析比較排水材料滲透係數Kd、土壤滲透係數Ks、排水管管徑Dp、長度Ld、地下水位與管口高程差Dw等個別因子對單位時間排水量Qd及滲流壓力水頭Hp分佈的影響。同時發現極限排水情況下,水平排水管的周圍存在著一特殊的等水壓力曲面,被命名為特徵水壓面 (CIPS)。該曲面敏銳的反應因條件改變而引致的滲流變化,因此可以成為評估水平排水管的排水容量和滲流壓力分佈的指標。
研究也觀察到當排水管超過一定長度時,只有靠近管口的一段管長對排水量的增加和水壓分佈具有影響,稱之為有效管長Le。Le受Dw/Dp及Kd/Ks影響且與滿管流之狀態息息相關,因而推論適當的埋設(向上傾斜)角度可降低極限情況下的管內壓力及增加Le 和Qd。此外,研究也進行濾層和阻塞的模擬,對區段阻塞的影響性更為明確。最後,根據單支水平排水管的模擬分析及一組代表性的成果數據,取得Le、Qd、CIPS之尺寸Dc、Lc及壓力水頭值Hp與主要參數Dw/Dp及Kd/Ks之間的量化關係,並藉此建構一概念性的擋土牆配置水平排水管的簡化評估模式,應有利於排水設計或破壞分析等相關實務或研究工作。


Horizontal drain pipes are frequently used behind a retaining wall or on a slope to prevent damage because of the build-up of groundwater pressure. However, the distribution of pressure heads surround a drain pipe is truly a 3-D situation. There is no easy way to estimate the maximum discharge rate for the design of drain pipes.
An early study has verified a simulation of sandbox drainage test by the 3-D numerical model software named GMS (Groundwater Modeling System) with an option of finite-element module FEMWATER. Through the simulation, the drainage material was treated as porous medial and has a permeable property. Therefore, is capable for simulate horizontal drain pipe under a seepage condition. After that, a sensitivity study to clarify the major influence on the discharge rate Qd and the distribution of groundwater pressure was performed. Permeabilities of drainage material Kd and backfill Ks, dimensions of drain pipe Dp and Ld, the distance between groundwater table and pipe outlet Dw were found to be related to the variation of pressure head distribution. In that study research has revealed a unique equalized water pressure contour existed between the hydrostatic and drainage pressure systems. The unique water pressure contour has the biggest but still closed horn shape was named Characterized Iso-pressure Surface (CIPS). The shape, the dimensions (Dc, Lc) and pressure head Hp of CIPS were found to be good objects to reflect the drainage capacities and the seepage pressure distribution pattern.
The research also observed a limited section of pipe length contribute to the increase of Qd and the decrease of Hp. It was named Effectiveness Length Le. Le is not only influence by Dw/Dp and Kd/Ks but also related to the flow pressure inside the pipe. Therefore, it is assumed a pipe installed with an upward inclination would be a help to decrease the flow pressure inside the pipe and increase Le and Qd. Based on the analysis of simulation results, research create mathematic relationship among Le, Qd, Dc, Lc, Hp, Dw/Dp and Kd/Ks. Eventually has established a conceptual simplified assessment model for horizontal drain pipes behind a retaining wall. It is expected to be beneficial to the drainage design work or the back analysis practice for retaining walls.

論 文 摘 要I ABSTRACTII 誌 謝III 第一章 緒論1 1.1 前言1 1.1.1 排水設施的必要性與設計評估困難2 1.2 研究動機3 1.3 研究方法與歷程6 第二章 文獻回顧11 2.1 擋土牆背鋪設面層式排水材之滲流分析11 2.1.1 牆背設有斜向排水層12 2.1.2 牆背設有垂直排水層14 2.2 邊坡設置水平排水管之滲流分析16 2.4 擋土牆或邊坡排水之數值模擬22 第三章 理論背景與分析工具25 3.1 GMS系統及FEMWATER模組介紹25 3.3 數值分析解法32 3.3.1 葛爾金(Galerkin)有限元素法32 3.4 材料特性定義34 3.4.1 流體性質34 3.4.2土壤性質34 3.5.1 初始條件36 3.5.2 邊界條件36 第四章 砂箱試驗與數值模擬比對38 4.1 砂箱排水試驗探討38 4.1.1 砂箱箱體及量測裝置39 4.1.2 試驗土壤及排水材料41 4.1.3 砂箱配置及試驗步驟42 4.1.4 定水頭試驗數據45 4.2 砂箱排水試驗數值模擬49 4.2.1 砂箱之數值模型建構49 4.2.2 材料參數設定50 4.2.3 砂箱試驗數值模擬結果52 4.2.4 數值模擬結果與試驗觀測比對53 第五章 水平排水管之數值模型建構57 5.1 模型尺寸探討57 5.1.1 程式精確度57 5.1.2 邊界尺寸效應58 5.2 模擬條件與參數設定68 5.2.1 初始情況與邊界條件設定68 5.2.2 模擬參數設定69 第六章 單支水平排水管分析結果探討72 6.1 單支水平排水管之壓力水頭分佈特性72 6.1.1 特徵水壓曲面及區間水壓分佈現象73 6.1.2 特徵水壓圓錐(CIPS horn)之量化評估模式76 6.2 特徵水壓曲面影響因子探討78 6.2.1 總水頭差 (Dw)78 6.2.2 排水管與土壤滲透係數比 Kd /Ks81 6.2.3等勢能曲面詮釋CIPS現象85 6.2.4排水管長Ld與有效管長Le92 6.2.5排水管管徑Dp96 6.2.6有效管長Le影響因子綜合探討97 6.3 濾層模擬與阻塞效應101 6.3.1 濾層滲透係數Kf 與厚度影響101 6.3.2 濾層阻塞現象模擬探討106 第七章 水平排水管簡化分析模式之建構概念108 7.1 影響因子、排水量與滲流壓力之量化關係108 7.1.1 Qd之簡化評估109 7.1.2正規化單管之Le111 7.1.3正規化單管之CIPS horn尺寸及Hp值116 7.1.4滿管流與排水管傾向角度之影響120 7.2 排水量與滲流壓力之簡化分析模式建構127 7.3 應用於擋土牆穩定分析之可行性與限制132 第八章 結論與建議135 參考文獻138 附錄A 多支水平排水管之模擬分析與探討141

1.Cai F., Ugai K., Wakai A., Li Q., (1998),“Efects of horizontal drains on slope stability underrainfall by three-dimensional elenite element analysis”,Computers and Geotechnics 23,page 255~275。
2.Cedergren H. R., Seepage Drainage and Flow Nets, John Wiley & Sons, Inc., NY, 1989.
3.Dumml D., 1954. Drain-spacing formula. Agric. Eng. 35: 726-730.
4.Ernst L. F., 1956. Calculation of the.steady flow of ground water in vertical cross sections. Neth. J. Agric.Sci., 4: 126-131.
5.Koerner R. M. Koerner G. R., “Landfill leachate Clogging of Geotextile (and Soil)Filters,” EPA/600/2-91/025, 1991.
6.Medina L., Melis M. J., (1999), “Three-dimensional Numerical Analysis of the Deformations Induced by the Excavation of the Madrid Metro”, Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics, Minneapolis, Minnesota, USA, pp. 279-285.
7.Reddi L. N. et al, “Permeability Reduction of Soil Filters due to Physical Clogging” Journal of Geotechnical and Geoenviromental Engineering, Vol. 126, No. 3, pp. 236-246, March 2000.
8.Reddi, L. N. et al, “Effects of Ionic Strength on Fine Particle Clogging of Soil Filters” Journal of Geotechnical and Geoenviromental Engineering, Vol. 128, No. 8, pp. 631-639, March 2000.
9.Reihart D. R. et al, “Assessment of Leachate Collection System Clogging at Florida Municipal Solid Waste Landfills” Florida Center for Solid and Hazardous Waste Management, Report #98-X, October 30, 1998.
10.Smart P., and Herbertson J. G., Drainage Design, Blackie and Son Ltd., Glasgow and London, 1992.
11.Zettler A.H., R. Poisel, W. Roth and A. Preh (1999), “Slope Stability Analysis Based on the Shear Reduction Technique in 3D”, Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics, Minneapolis, Minnesota, USA, pp. 11-16.
12.Yeh G.T., FEMWATER: A Finite Element Model of WATER Flow through Saturated- Unsaturated Porous Media - First Revision ORNL-5567/R1 (August 1987)
13.Yeh G.T., 3DFEMWATER: A Three-Dimensional Finite Element Model of WATER Flow Through Saturated-Unsaturated Media ORNL-6386 (August 1987)
14.李煜舲等,“擋土牆排水之數值模擬與分析”,地工技術,第85期,第51~60頁,2001。
15.林光敏 2002 梨山地區地滑行為與數值模擬之研究 國立台灣大學土木工程學研究所民國91年 (碩士) 學位論文摘要。
16.呂理川,「砂中排水帶功效評估之數值模擬」,碩士論文,國立台灣科技大學營建工程研究所,2006。
17.楊啟宏,「排水管配置功效評估之數值模擬」,碩士論文,國立台灣科技大學營建工程研究所,2007。
18.劉鐙蔚,「擋土牆後排水管之排水機制探討」,碩士論文,國立台灣科技大學營建工程研究所,2008。
19.洪明瑞、袁榮宏、張吉佐,“土木工程導、排水新技術與工程案例之探討(一)、(二)、(三)”,現代營建第262~264期,2001.
20.周南山、陳鴻運,“地錨工法及加勁工法運用於坡地社區護坡之檢討” 第十屆大地工程學術研討會
21.胡鳴群、袁榮宏、洪明瑞、沈振裕,“擋土牆毛細排水新技術與工程案例介紹”,第九屆大地工程學術研討會論文集,2001.
22.黃漢誠等,“擋土牆排水設施之排水功效”,中華水土保持學報,第30卷,第3期,第168~179頁,1999。
23.陳志南、陳鴻運,“毛細排水帶應用於擋土牆工程之配置設計最佳化研究〞,國科會小產學研究計畫成果完整報告,2005。
24.陳志南, “地下水脈之檢測探討及其邊坡穩定之影響研究” NSC92-2211- E011-019, 行政院國家科學委員會專題研究計畫成果報告, 台北. 2004,
25.陳鴻運,“濾層材料及土壤阻塞問題探討”, 清雲土木工程及物業管理研討會,第b1~b7,頁2009。
26.張建勛,灌溉與排水,中國工程師手冊水利類第九篇,第四章,第247~268頁,中國土木水利工程學會,1985。
27.鄧鳳儀,“地滑地區滲流及地下排水工法對邊坡穩定影響之數值模擬—以梨山地滑區為例”,國立中興大學水土保持學系,碩士論文,2005。

QR CODE