簡易檢索 / 詳目顯示

研究生: 賴毅龍
Yi-Lung Lai
論文名稱: 自然光照明系統的發展與應用
Development and Applications of Natural Light Illumination System
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 趙涵捷
Han-Chieh Chao
郭重顯
Chung-Hsien Kuo
鄭超仁
Chao-Jen Cheng
艾和昌
Her-chang Ay
周雍強
Yon Chou
林瑞珠
Jui-Chu Lin
蔡明忠
Ming-Jong Tsai
黃柏仁
Bohr-Ran Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 118
中文關鍵詞: 自然光照明系統自然光集光系統傳光系統放光系統成本分析
外文關鍵詞: Natural Light Illumination System, Natural light, Light Collector, Light Transmitter, Light Emitter, Cost Analysis
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要內容在論述國立台灣科技大學(NTUST)黃忠偉教授領導的PSSDL實驗室開發的自然光照明系統(NLIS)的典型技術及其發展。並提出層疊直角棱鏡的二維數學模型來描述太陽的路徑與層疊直角棱鏡的集光效率之間的關係。另外,改善NLIS系統的集光效率可以藉由修改每個棱鏡的長度、選用3個層疊棱鏡及確保陽光沿棱鏡的YZ方向上運行而得到改善。接著,將NLIS各組件的性能做總結,並探討一些有趣應用的發想,再利用FRED及DIALux設計一個『NLIS搭配光電傳感器之LED自動補光的辦公室』做為例子來說明整個設計及驗證的流程。也提出一個基本成本概念來評估投資回收期。
首先,本論文第1章簡介研究背景、本文架構與研究動機。第2章提出層疊直角棱鏡的數學模型,可藉此提升層疊直角棱鏡集光的效率。通過FRED光學設計軟體的驗證,此提出的數學模型可分析層疊直角棱鏡的集光效率與太陽的路徑之間的關係。另外,改良NLIS系統的集光效率可以經由修改每個棱鏡的長度、採用3層疊棱鏡以及確保陽光沿棱鏡的YZ方向行進來得到改善。第3章總結NLIS組件的性能。照明和建築節能方面若要考慮到低成本、易於安裝和維護,則NLIS系統是極具潛力的。NLIS系統由集光子系統、傳光子系統和放光子系統串疊而成。因此,NLIS整體系統的效率為集光子系統的效率、傳光子系統的效率和放光子系統的效率相乘。除了這些子系統的效率之外,各子系統之間的界面組件、耦合器,也對NLIS系統的總體效率影響深遠。第4章介紹了一些當前已經實際應用的場域以及發想未來可以應用的場域。利用FRED及DIALux設計一個『NLIS搭配光電傳感器之LED自動補光的辦公室』做為例子來說明整個設計及驗證的流程。在實用上,NLIS系統是具有成本效益的,並提供使用它的人許多的好處。經由第5章投資回收期的計算指出安裝NLIS的具體機會及NLIS發展的明確方向。因此,NLIS在環保、健康及實際經濟的作為上具有顯著且重要的意義與貢獻。


In this dissertation, the typical technology development of Light Illumination System (NLIS) at National Taiwan University of Science and Technology (NTUST) in Taiwan is reviewed. The two-dimensional mathematical models of cascading right-angle prisms were proposed to describe the collection efficiency on the relationship between cascading right-angle prisms and the path of the sun. In addition, the collection efficiency of the modified NLIS design can be improved by modifying the length of every prism, 3 cascading prisms, and sunlight rotating around the prism in y-z direction. The performances of NLIS Components are summarized. Some interesting applications are also discussed, and take an example of NLIS with phototransistor sensor LED supplementary lighting. In addition, a basic concept of costs is proposed to evaluate the payback period.
Chapter 2 proposed the mathematical models of cascading right-angle prisms. To deal with the collection efficiency problems for cascading right-angle prisms, they have been verified by FRED optical design software. The mathematical models are proposed to analyze the collection efficiency on the relationship between cascading right-angle prisms and the path of the sun. In addition, the collection efficiency of the modified NLIS design can be improved by modifying the length of every prism, 3 cascading prisms, and sunlight rotating around the prism in y-z direction. Chapter 3 summarized the proposed the performances of NLIS Components. Considering low cost and ease of installation and maintenance, NLIS system is a promising candidate for illumination and building energy saving. The NLIS system is composed of light collector, light transmitter and light emitter. Thus, the formula of the total efficiency of NLIS system is ηtotal = ηcollector × ηtransmitter × ηemitter, where ηcollector is efficiency of light collector subsystem, ηtransmitter is efficiency of light transmitter subsystem, and ηemitter is efficiency of emitter subsystem. In addition to these subsystems, interface components, couplers, between each systems is also important to affect the total efficiency of NLIS system. Chapter 4 introduced some current applications and took an example to describe the illumination requirements. In practice, NLIS system is cost-effective and provides many benefits for the people who use it. Chapter 5 showed the calculation of payback period to find the opportunity to installation of NLIS; therefore, the NLIS has remarkable economic significance.

ABSTRACT (Chinese).............................................................I ABSTRACT.....................................................................III Acknowledgement................................................................V Table of Contents.............................................................VI List of Figures.............................................................VIII List of Tables...............................................................XII Chapter 1 Introduction.......................................................1 1.1 Background................................................................1 1.1.1 Critical Issues of The 21st Century.....................................1 1.1.2 Advantages and Disadvantages of Daylighting.............................2 1.1.3 Daylighting from Windows and Skylight...................................4 1.1.4 Various Natural Light Illumination Systems..............................6 1.1.5 Introduction to Photometry.............................................10 1.1.6 Basic Optical Theory...................................................13 1.2 Motivation...............................................................15 1.3 Dissertation Organization................................................16 Chapter 2 Principles of Cascading Right-Angle Prisms as Light Collector.....17 2.1 Mathematical Analysis of Cascading Right-Angle Prisms....................17 2.1.1 Two-Dimensional Analysis of Input and Output Light.....................20 2.1.2 Module of Right-Angle Prisms...........................................23 2.1.3 Verification of Simulation Results.....................................25 2.2 Modified Length Right-Angle Prisms.......................................27 2.2.1 Discussed Factors......................................................27 2.2.2 Verification of Simulation Results.....................................32 2.3 Summary..................................................................32 Chapter 3 Development of Natural Light Illumination System (NLIS)............33 3.1 Light Collector..........................................................35 3.1.1 Compound Parabolic Concentrator (CPC)..................................37 3.1.2 Two 2-D Lenses (2D lenses).............................................38 3.1.3 Double Non-Spherical Lens..............................................39 3.1.4 Prismatic Elements.....................................................40 3.1.5 Circular Concentrator..................................................45 3.1.6 Planar Concentrator with Bilayer Structure.............................46 3.1.7 Chromatic Lens for UV-IR Filter........................................47 3.2 Light Transmitter........................................................49 3.2.1 Optical Fiber..........................................................50 3.2.2 Light Pipe.............................................................52 3.2.3 Optical Switch.........................................................53 3.3 Light Emitter............................................................54 3.3.1 Lightpipe Dot Pattern for Uniform Illumination.........................54 3.3.2 Active Lighting Module.................................................55 3.3.3 Multi-Source Reflecting Freeform Emitting Component....................56 3.4 Total Efficiency.........................................................58 Chapter 4 Applications of Natural Light Illumination System (NLIS)..........62 4.1 Energy Saving............................................................62 4.2 Indoor Illumination......................................................64 4.3 Health Benefits..........................................................64 4.4 Daytime Running Lights...................................................65 4.5 The Backlight Module of LCD TV...........................................66 4.6 Tune the Light...........................................................66 4.7 Houseplant Growth–Use Houseplants to Clean The Air.......................68 4.8 Task Lighting............................................................69 4.9 Sun Dryer................................................................70 4.10 Plant Factory Lighting..................................................71 4.11 Take the Office for Example.............................................72 4.11.1 Smart Natural Light Illumination System...............................72 4.11.2 Office Regulation.....................................................73 4.11.3 Use of NLIS Components................................................75 4.11.4 Simulation Results....................................................78 Chapter 5 Cost Analysis of NLIS System......................................81 5.1 Costs....................................................................81 5.2 Payback Period...........................................................82 Chapter 6 Conclusions and Future Directions.................................89 6.1 Conclusions..............................................................89 6.2 Future Directions........................................................90 Reference.....................................................................92

[1] Stanley R. Bull, “Renewable Energy In The 21st Century,” Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000), Vol. 1, pp. 18–31 (2000).
[2] Sensors Applications, Volume 3, Sensors in Medicine and Health Care, P. Ake Oberg, Tatsuo Togawa, and Francis A. Spelman (Editors), WILEY-VCH, March (2006).
[3] Kow-Ming Chang, Chiung-Hui Lai, Chu-Feng Chen, Po-Shen Kuo, Yi-Ming Chen, Tai-Yuan Chang, Allen Jong-Woei Whang, Yi-Lung Lai, Huai-Yi Chen, and Ing-Jar Hsieh, “Self-Passivation by Fluorine Plasma Treatment and Low-Temperature Annealing in SiGe Nanowires for Biochemical Sensors,” Journal of Nanoscience, Vol. 2014, Article ID 961720, 7 pages (2014).
[4] Chiung-Hui Lai, Kow-Ming Chang, Tai-Yuan Chang, Chu-Feng Chen, Po-Shen Kuo, Yi-Ming Chen, Allen Jong-Woei Whang, Yi-Lung Lai and Shiu-Yu Wang, “Influence of Surface State on Biochemical Sensing Using SiGe Nanowire,” IEEE Transactions on NanoBioscience, Vol. 14, No. 4, pp. 334–338 (2015).
[5] Yi-Lung Lai, Tai-Yuan Chang, Kow-Ming Chang, Chu-Feng Chen, Chiung-Hui Lai, Yi-Ming Chen, Allen Jong-Woei Whang, Hui-Lung Lai, Huai-Yi Chen and Shiu-Yu Wang, “Effects of Low-temperature Si Buffer Thickness and SiGe Oxidation on Sensitivity of Si1-xGex Nanowire,” Japanese Journal of Applied Physics, Vol. 54, pp. 06FG12-1–06FG12-5 (2015).
[6] Yi-Ming Chen, Tai-Yuan Chang, Chiung-Hui Lai, Kow-Ming Chang, Chu-Feng Chen, Yi-Lung Lai, Allen Jong-Woei Whang, Hui-Lung Lai, and Terng-Ren Hsu, “Investigation of Defect Free SiGe Nanowire Biosensor Modified by Dual Plasma Technology,” Journal of Nanoscience and Nanotechnology, vol. 15, pp. 1–6 (2015).
[7] Carlo C. Jaeger and Julia Jaeger, “Three Views of Two Degrees,” Reg Environ Change, Vol. 11, pp. S15–S26 (2011).
[8] Climate Change 2013: The Physical Science Basis. Retrieved from: http://www.ipcc.ch/report/ar5/wg1/
[9] Climate Change 2014: Impacts, Adaptation, and Vulnerability. Retrieved from: http://www.ipcc.ch/report/ar5/wg2/
[10] Climate Change 2014: Mitigation of Climate Change. Retrieved from: http://www.ipcc.ch/report/ar5/wg3/
[11] M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renewable and Sustainable Energy Reviews, Vol. 11, pp. 1388–1413(2007).
[12] M. Asif and D. Barua, “The bangladesh micro-generation energy Model: lessons for developing countries,” A Scientific Journal of COMSATS – Science Vision, Vol. 15, No. 2, pp. 49–55 (2009).
[13] Alternative Energy. Available from: http://www.altenergy.org/renewables/solar.html.
[14] E. Rebhan, “Efficiency of nonideal Carnot engines with friction and heat losses,” Am. J. Phys., Vol. 70, No. 11, pp. 1143–1149 (2002).
[15] L. M. Fraas, W. R. Pyle, and P. R. Ryason, “Concentrated and piped sunlight for indoor illumination,” Applied Optics, Vol. 22, No. 4, pp. 578–582 (1983).
[16] Green Building Rating Systems-Draft Recommendations for a U.S. Rating System, U.S. Green Building Council, Bethesda, Md., August 13 (1995).
[17] P. Ihm, A. Nemri and M. Krarti, “Estimation of Daylighting Energy Savings from Daylighting,” Buildings and Environment, Vol. 44, pp. 509–514 (2008).
[18] L. Edwards and P. Torcellini, “A Literature Review of the Effects of Natural Light on Building Occupants,” National Renewable Energy Laboratory, NREL/TP-550-30769, July (2002).
[19] International Energy Agency, Tracking Clean Energy Progress 2014, 5th Clean Energy Ministerial, Seoul, Korea, May (2014).
[20] W.V. Bommel, G.V.D. Beld, “Lighting for Work: A Review of Visual and Biological Effects,” Lighting Research and Technology, Vol. 36, No. 4, pp. 255–269 (2004).
[21] D.H.W. Li and J.C. Lam, “Evaluation of Lighting Performance in Office Buildings with Daylighting Controls,” Energy and Buildings, Vol. 33, pp. 793–803 (2001).
[22] S. A. Samani and S. A. Samani, “The Impact of Indoor Lighting on Students’ Learning Performance in Learning Environments: A knowledge internalization perspective,” International Journal of Business and Social Science, Vol. 3 No. 24, pp. 127–136 (2012).
[23] P. Plympton, S. Conway, K. Epstein, “Daylighting in Schools-Improving Student Performance and Health at A Price Schools Can Afford,” National Renewable Energy Laboratory, NREL/CP-550-28049, pp. 1–7, August (2000).
[24] H. Braun, “Photobiology: The Biological Impact of Sunlight on Health & Infection Control,” Phoenix Project Foundation, pp. 1–18 (2008).
[25] Michael F Holick, “Sunlight and Vitamin D for Bone Health and Prevention of Autoimmune Diseases, Cancers, and Cardiovascular Disease,” The American Journal Clinical Nutrition, Vol. 80, No. 6, pp. 1678S–1688S (2004).
[26] A. Dunne, “Some Effects of The Quality of Light on Health,” Journal of Orthomolecular Medicine, Vol. 4, No. 4, pp. 229–232 (1989).
[27] David Olszewski, “Light and Health,” Consumer Health, Vol. 22, Issue 10, pp. 1–5 (1999).
[28] M. Kischkoweit-Lopin, “An Overview of Daylighting Systems,” Solar Energy, Vol. 73, No. 2, pp. 77–82 (2002).
[29] A. Rosemann and H. Kaase, "Lightpipe applications for daylighting systems," Solar Energy, Vol. 78, No. 6, pp. 772–780 (2005).
[30] Kent D. Kobayashi, James McConnell, and John Griffis, “Bougainvillea,” Ornamentals and Flowers, pp. OF-38-1–OF-38-12 (2007).
[31] A. Rosemann and H. Kaase, “Light Applications for Daylighting Systems,” Sol. Energy, Vol. 78, pp. 772–780 (2005).
[32] A. Rosemann, M. Mossman, and L. Whitehead, “Development of a Cost-Effective Solar Illumination System to Bring Natural Light Into the Building Core,” Sol. Energy, Vol. 82, pp. 302–310 (2008).
[33] E. L. Kruger and A. L. Dorigo, “Daylighting Analysis in a Public School in Curitiba, Brazil,” Renewable Energy, Vol. 33, pp. 1695–1702 (2008).
[34] A. D. Galasiu and J. A. Veitch, “Occupant Preferences and Satisfaction With the Luminous Environment and Control Systems in Daylit Offices: A Literature Review,” Energy Build., Vol. 38, No. 7, pp. 728–42 (2006).
[35] H. D. Cheung and T. M. Chung, “A Study on Subjective Preference to Daylit Residential Indoor Environment Using Conjoint Analysis,” Build. Environ., Vol. 43, No. 12, pp. 2101–2111 (2008).
[36] J.-l. Scartezzini and G. Courret, “Anidolic daylighting systems,” Solar Energy Vol. 73, No. 2, pp. 123–135 (2002).
[37] Himawari 2004. Available from: http://www.himawari-net.co.jp.
[38] D. Earl and J.D. Muhs, “Preliminary results on luminaire design for hybrid solar lighting systems,” in Proceedings of Forum 2001:Solar Energy: The Power to Choose, pp. 119–122, April 21-25, 2001, Washington, DC.
[39] Dennis D. Earl, Curt L. Maxey, Jeff D. Muhs, and Robert R. Thomas, “Performance Of New Hybrid Solar Lighting Luminaire Design,” in Proceedings of ISEC 2003: International Solar Energy Conference, pp. 675–679, March 15-18, 2003, Kohala Coast, Hawaii, USA.
[40] MV Lapsa, LC Maxey, DD Earl, DL Beshears, Christina D. Ward, James E. Parks. “Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat,” Energy Engineering, Vol. 104, No. 4, pp.7–20 (2007).
[41] HSL System User’s Guide. Available from: http://www.adlinktech.com/publications/manual/HSLSystem/HSL_50-12100-200.pdf.
[42] Solatube® system. Available from: http://www.solatube.com/residential/daylighting.
[43] A. J.-W. Whang, Y.-Y. Chen, S.-H. Yang, P.-H. Pan, K.-H. Chou, Y.-C. Lee, Z.-Y. Lee, C.-A. Chen, and C.-N. Chen, “Natural light illumination system,” Applied Optics, Vol. 49, No. 35, pp. 6789–6801 (2010).
[44] Ian Ashdown, Radiosity: A Programmer’s Perspective, John Wiley & Sons, Inc. New York, NY, USA, January (1994).
[45] Roy S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd Ed., John Wiley & Sons, Inc. New York, NY, USA, March (2000)
[46] The Basics of. Efficient Lighting. A Reference Manual for Training in Efficient Lighting Principles. First Edition, National Franework for Energy Efficiency, December (2009).
[47] A.S. Glassner (1989). An Introduction to Ray Tracing, Academic Press.
[48] B. De Greve (2006). Reflections and refractions in ray tracing. http://www.flipcode.com/archives/reflection_transmission.pdf
[49] Roland Winston, Juan C. Miñano, Pablo Benítez, Narkis Shatz and John C. Bortz, Nonimaging Optics, Elsevier Inc., December (2004).
[50] R. L. Bailey and R. L. Bailey, “A Proposed New Concept for a Solar-Energy Converter,” J. Eng. Power, Vol. 94, No. 2, pp. 73-77 (1972).
[51] J.T. Kim, G. Kim, “Overview and new developments in optical daylighting systems for building a healthy indoor environment,” Building and Environment, Vol. 45, pp. 256–269 (2010).
[52] D. Vazquez-Moliní, and M. González-Montes, A. A. FernandezBalbuena, E. Bernabeu, A. Garcia-Botella,; L. Garc´ıa, W. Pohl, “Active Daylighting System (ADASY),” in Proceedings of SPIE, Vol. 7410, No.2, p. 74100H. SPIE Optics and Photonics, San Diego (2009).
[53] T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Solar Energy Materials & Solar Cells, Vol. 57, pp. 75–83 (1999).
[54] E. Hetch, The Propagation of Light, Chap. 4 in Optics, fourth ed. Addison Wesley., pp.86–141 (2002).
[55] Chih-Hung Chang, Horng-Ching Hsiso, Cheng-Ming Chang, Chen-You Wang, Tzung-Han Lin, Yi-Yung Chen, Yi-Lung Lai, Cho-Jung Yen, Kuan-Yu Chen, and Allen Jong-Woei Whang, “Heliostat design for the daylighting system,” Applied Optics, Vol. 53, No. 29, pp. H165– H169 (2014).
[56] A. J.-W. Whang, C.-H. Chou, J.-J. Hsieh, and Y.-M. Chen “The Freeform Mirror Design for Static Concentrator Module,” 2014 International conference on advanced robotics and intelligent (ARIS 2014), pp. 124–127, Taipei, Taiwan, R.O.C.
[57] A. Lo and J. Arenberg (2006). New architecture for space telescopes uses Fresnel lenses, SPIE Newsroom. http://spie.org/x8645.xml%202012-09-12.
[58] DAVID PELKA (2005). Lighting by Design: Solid-state lighting requires specialized optical design for optimal performance, SPIE's oemagazine, pp. 26–28.
[59] Ralf Leutz and Akio Suzuki (2001). Nonimaging Fresnel Lenses Design and Performance of Solar Concentrators, Springer Series in Optical Sciences.
[60] Charles E. Backus, “Solar‐energy conversion at high solar intensities,” J. Vac. Sci. Technol, Vol. 12, pp. 1032–1042 (1975).
[61] A. Rabl, “Optical and thermal properties of compound parabolic concentrators,” Solar Energy, Vol. 18, No. 6, pp. 497–511 (1976).
[62] Y. Y. Chen, W. Huang, and A. J. W. Whang, “Design and Analysis of Natural Light Guiding CPC Structure Used for Indoor Illumination,” Proc. of SPIE, Vol. 7059, pp. 90590M-1–70590M-11, San Diego, CA (2008).
[63] Poulek V, Libra M. New bifacial solar trackers and tracking concentrators; 2007. http://www. solar-trackers.com.
[64] Y.-Y. Chen ; C.-Y. Liu ; A. J.-W. Whang, “Static refractive concentrator design for light collimation,” Proc. SPIE 7059, 70590Q (2008).
[65] W.-A. Chen, Y.-Y. Chen, A. J.-W. Whang, and C.-T. Ma, “A Hemispherical Static Concentrator with Double Aspheric Compensated Lens Array for Continued Collecting Sunlight,” Proc. of SPIE, Vol. 8124, pp. 81240Q-1–81240Q-10 (2011).
[66] Yi-Yung Chen, Chun-Chieh Wang, Allen Jong-Woei Whang, and Chen-Ming Yi, “Design and Analysis of Cascadable Optical Unit Used to Compress Light for Indoor Illumination,” Proc. of SPIE, Vol. 7059, p. 70590N (2008).
[67] Shu-Hua Yang, Yi-Yung Chen, and Allen Jong-Woei Whang, “Using Prismatic Structure and Brightness Enhancement Film to Design Cascadable Unit of Static Solar Concentrator in Natural Light Guiding System,” Proc. of SPIE, Vol. 7423, p. 74230J (2009) .
[68] S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu and Y.-Y. Chen, “Distribution of Emerged Energy for Daylight Illuminate on Prismatic Elements,” Journal of Solar Energy Engineering, Vol. 133, pp. 021007-1–021007-9 ( 2011).
[69] A. J.-W. Whang, S.-M. Chao, W.-S. Su and Y.-T. Chen, “The Optimized Design of the Conventional Prismatic Elements for the Natural Light Illumination System,” 2014 International conference on advanced robotics and intelligent (ARIS 2014), pp. 128–131, Taipei, Taiwan, R.O.C.
[70] A. J.-W. Whang, C.-C. Wang, and Y.-Y. Chen, “Design of cascadable optical unit to compress light for light transmission used for indoor illumination,” Renewable Energy, Vol. 34, pp. 2280–2295 (2009).
[71] Nai-Lun Ku, Yi-Yung Chen, Wei-Che Hsieh, and Allen Jong-Woei Whang, “A Cascadable Circular Concentrator with Parallel Compressed Structure for Increasing the Energy Density,” Proc. of SPIE, Vol. 8256, pp. 825619-1–825619-9 (2012).
[72] M.-C. Tsai, A. J.-W. Whang, and T.-X. Lee, “Design of a high-efficiency collection structure for daylight illumination applications,” APPLIED OPTICS, Vol. 52, No. 36, pp. 8789–8794, 2013.
[73] Karp, Jason H., Eric J. Tremblay, and Joseph E. Ford, “Planar micro-optic solar concentrator," Optics Express, Vol. 18, Issue 2, pp. 1122–1133 (2010).
[74] Hagen, Nathan, and Tomasz S. Tkaczyk, “Compound prism design principles, I,” Applied optics, Vol. 50, Issue 25, pp. 4998–5011 (2011).
[75] A. J. W. Whang, C. H. Chou, T. H. Hsieh, P. Y. Kao, “The Innovative Flat Concentrator Design Based on Micro Prism Arrays and Lightguide for Indoor Illumination,” 2014 International conference on advanced robotics and intelligent (ARIS 2014), pp. 132–135, Taipei, Taiwan, R.O.C.
[76] Solar constant at ground level. Available from:
http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx.
[77] A. J. W. Whang, Y. Y. Chen, and B. Y. Wu, “Innovative design of Cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight,” Sol. Energy, Vol. 83, Issue 8, pp. 1115–1122 (2009).
[78] N. S. Kapany (1958), Colored glass fibers for photographing color TV, or a flexible gastroscope for seeing around the ‘corners’ of your stomach re possible with… Fiber optics, The Frontier, publ. Armour Research Foundation of Illinois Institute of Technology, Spring 1958, pp. 18–23.
[79] E. Hecht (2002), Optics, 4th edition, Addison-Wesley.
[80] J. Hecht (1999), Understanding Fiber Optics – 3rd edition, Prentice Hall, Upper Saddle River, New Jersey, Columbus, Ohio.
[81] T. Izawa and S. Sudo (1987), Optical Fibers: Materials and Fabrication, KTK Scientific Publishers & D. Reidel Publishing Company.
[82] N. Narendrana, N. Maliyagodaa, and R. Levinb, “Propagation Characteristics of Polychromatic Light through Polymer Optical Fibers,” Journal of the Illuminating Engineering Society, Vol. 29, Issue 1, pp. 81–89 (2000).
[83] A. J.-W. Whang, Y.-H. Yeh and Y.-Y. Chen, “Modular Design Optical Light Pipe with High Efficiency,” Proc. of SPIE, Vol. 8620, pp. 86201U-1–86201U-7 (2013).
[84] K.-H. Chou, Y.-Y. Chen, and A. J.-W. Whang, “An Optical Switch of Natural Light Guiding System Based on Cubic Structure with Fresnel Surface,” Proc. of SPIE, Vol. 7428, pp. 74280O-1–74280O-9 (2009).
[85] A. J.W. Whang, K.Y. Chen, K.H. Chou and Y.Y. Chen, “Refining an optical switch for the Natural Light Guiding System,” Lighting Res. Technol., Vol. 43, pp. 281–289 (2011).
[86] Z.-Y. Lee, Y.-Y. Chen, and A. J.-W. Whang, “Design and Optimization of Dot Pattern in Illumination Lightpipe of Natural Light Guiding System,” Proc. of SPIE, Vol. 7429, 74290A-1–74290A-10 (2009).
[87] C.-A. Chen, Y.-Y. Chen, and A. J.-W. Whang, “An Active Lighting Module with Natural Light Guiding System and Solid State Source for Indoor Illumination,” Proc. of SPIE, Vol. 7422, pp. 74220Z-1–74220Z-9 (2009).
[88] Ping-Kuang Chen, Allen Jong-Woei Whang, Kai-Cyuan Jhan, and Yu-Hau Ho, “Innovative Multi-Source Reflecting Freeform Emitting Component,” 2014 International conference on advanced robotics and intelligent (ARIS 2014), pp. 111–114, Taipei, Taiwan, R.O.C.
[89] Po-Hsuan Pan, Yi-Yung Chen, and Allen Jong-Woei Whang, “An Optical Coupler of Natural Light Guiding System Based on Stepped Structure,” Proc. of SPIE, Vol. 7423, pp. 74230I-1–74230I-8 (2009).
[90] A. J.-W. Whang, YH Hsu and S. H. Jung, “Use Freeform Reflector Method In Lighting Coupler,” Proc. of SPIE, Vol. 8620, pp. 862023-1–862023-6 (2013).
[91] J. J. Gooley, S. M. W. Rajaratnam, G. C. Brainard, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley, “Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light,” Science Translational Medicine, Vol. 2, No. 31, pp. 31–33 (2010).
[92] David Lingfors, “Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights, UPTEC ES12032, Examensarbete 30 hp December 2012. Available from: http://www.diva-portal.org/smash/get/diva2:639649/FULLTEXT03.
[93] Trick Eye Museum in Singapore – A museum like no other, http://www.rwsentosa.com/language/en-US/Homepage/Attractions/TrickEyeMuseum
[94] Jenny Spenwyn & Doug J. K. Barrett & Mark D. Griffiths, “The Role of Light and Music in Gambling Behaviour: An Empirical Pilot Study,” Int J Ment Health Addiction, Vol. 8, pp. 107–118 (2010).
[95] Höppe P1, Martinac I., “Indoor climate and air quality, Review of current and future topics in the field of ISB study group 10,” Int J Biometeorol, Vol. 42, No. 1, pp. 1–7 (1998).
[96] L. Claudio, “indoor air quality planting healthier indoor air,” Environmental Health Perspectives, Vol. 119, No. 10, pp. A426–A427 (2011).
[97] MARIA JANOWIAK , “9 Air-Cleaning Houseplants That Are Almost Impossible to Kill,” MARCH 3, 2015. Available from: http://greatist.com/connect/houseplants-that-clean-air
[98] Berg G, Mahnert A, and C. Moissl-Eichinger, “Beneficial effects of plant-associated microbes on indoor microbiomes and human health?” Front Microbiol., Vol. 5, No. 15, pp. 1–5 (2014).
[99] Park SH and Mattson RH., “Ornamental indoor plants in hospital rooms enhanced health outcomes of patients recovering from surgery,” J Altern Complement Med.,Vol. 15, No. 9, pp. 975–980 (2009).
[100] Grinde B, Patil G., “Biophilia: does visual contact with nature impact on health and well-being?” Int J Environ Res Public Health, Vol. 6, No. 9, pp. 2332–2343 (2009)
[101] Eben Fodor, “The Solar Food Dryer How to Make and Use Your Own High-Performance, Sun-Powered Food Dehydrator,” Available from: http://www.solarfooddryer.com/SFD_Info.htm
[102] Audrey Wang, “Plant factories: the future of farming?” Taiwan Today, 2011. Available from: http://www.taiwantoday.tw/ct.asp?xItem=143927&CtNode=427
[103] E. Goto, “plant production in a closed plant factory with artificial lighting,” ISHS Acta Horticulturae 956: VII International Symposium on Light in Horticultural Systems, Available from: http://www.actahort.org/books/956/956_2.htm
[104] The Alliance to Save Energy (2011). Lumens vs Watts. LUMEN Coalition. Retrieved from: http://lumennow.org/lumens-vs-watts/
[105] yangzhaowu (2012 April 5). Lumen may be the next generation for a bulb measure standard of illuminance. LEDinside, a Business Division of TrendForce Corp. http://www.ledinside.com.tw/knowledge/20120405-20330.html
[106] Taiwan Power Company (2013). Electricity price comparison from country to country. Taiwan Power Company. http://www.taipower.com.tw/content/new_info/new_info-d16.aspx?LinkID=14
[107] M.S. Mayhoub and D.J. Carter, “The costs and benefits of using daylight guidance to light office buildings,” Building and Environment, Vol. 46, pp. 698–710 (2011).
[108] www.dh.gov.uk/ProcurementAndProposals/PublicPrivatePartnership/PrivateFinanceInitiative/fs/ (2006).

無法下載圖示 全文公開日期 2020/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE