簡易檢索 / 詳目顯示

研究生: 洪瑞謙
Ruei-Cian Hung
論文名稱: 應用於返馳式驅動器之發光二極體陣列最佳化組合設計
Optimum Combination Design of the Light Emitting Diode Array Applied for Flyback Converters
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 黃仲欽
Jonq-Chin Hwang
鄒明璋
Ming-Chang Tsou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 功率因數返馳式發光二極體泰勒級數
外文關鍵詞: power factor, flyback, light-emmitting-diode, Taylor Series
相關次數: 點閱:291下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討以發光二極體(Light Emitting Diode, LED)作為輸出之負載分析,針對其電壓和電流的指數特性,以泰勒級數描述特性曲線,並研製一返馳式LED驅動器之系統模型來驗證理論與實際相符。內文主要研究LED電壓與電流之間的指數關係,在傳統的模擬上,LED負載通常以線性模型呈現,而線性模型與實際值的誤差較大,因此本論文使用了泰勒級數來描述LED非線性負載的特性,再藉由Mathcad運算軟體準確地計算下,可有效地減少模擬與實際的誤差,並且從中了解溫度對發光二極體之影響,以利對於整個系統的特性分析。最後實作一組規格為商業照明120W之返馳式LED驅動器來進行理論驗證,其中包括返馳式轉換器的理論分析與系統設計流程,並透過電路模擬軟體SIMPLIS來呈現系統模型,可使讀者在短時間內了解本論文之系統架構;LED部分則採用市售之鋁燈組作為輸出負載,經由實作電路的量測結果與模擬結果具有良好的一致性,在同樣的溫度與系統之下,模擬與實作的誤差可小於3%,證明了泰勒級數模擬的精確性。透過研製一返馳式轉換器與輸出負載分析,除了從基礎理論上作設計外,還可由負載分析了解返馳式系統之特性,可使讀者在實際設計之前,對於整個系統有深入的了解,減少實作上的失誤與誤差。


This thesis discusses the output load analysis of light emitting diodes(LED). According to the exponential characteristics of its voltage and current, the Taylor Series is used to describe the characteristic curve, and a model of the flyback LED driver is implemented to verify that the theory is consistent with the reality. In this thesis, the exponential function relationship between voltage and current is primarily researched. In the tradition simulation, the LED load is usually presented as a linear model, and the linear model is much inaccurate in realty. Therefore, this thesis describes the non-linear load of the LED characteristics by using Taylor Series. The exact calculation in Mathcad computational software can effectively reduce the inaccuracy between the simulation and the realty, and realize the effect of temperature on the LED in order to facilitate the analysis of the characteristics in the system. In conclusion, a 120W prototype circuit of flyback LED driver was designed to verify the theory for proving the feasibility of system, including the theoretical analysis and system design procedure. Also, presenting the system through the simulation software SIMPLIS can make the reader understand the system architecture of this thesis in a short time. The part about LED adopts commercial aluminum lamps as output load. The reseults of the measurement in the circuit are in accordance with the simulation results. Under the same temperature and system, the inaccuracy between the simulation and implementation can be less than 3%, proving the Taylor Series simulation is exact. In addition to the basic theory for the design, the characteristics of flyback system can be understood via producing a flyback converter and output load analysis. Consequently, readers have an in depth understanding of the whole system and reduce mistakes and errors in the prototype circuit before the actual design.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 符號索引 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 5 1.3 系統架構之規格與特色 7 1.4 本文大綱 8 第二章 具功率因數修正返馳式轉換器 10 2.1 前言 10 2.2 主動式功率因數修正電路之控制方法 11 2.2.1 連續導通模式 11 2.2.2 不連續導通模式 17 2.2.3 邊界導通模式 19 2.3 返馳式轉換器工作原理 24 2.3.1 連續導通模式 25 2.3.2 不連續導通模式 29 2.3.3 邊界連續導通模式 32 2.4 返馳式功率因數修正電路之推導與設計 35 2.4.1 返馳式功率因數修正電路之推導 35 2.4.2 本文一次側控制IC介紹 38 2.4.3 變壓器設計 42 2.4.4 電路主要參數設計與元件選擇 46 第三章 發光二極體之等效電路模型 51 3.1 前言 51 3.2 發光二極體簡介 52 3.2.1 發光二極體特性 52 3.2.2 發光二極體應用 54 3.3 發光二極體模型 56 3.3.1 發光二極體直流訊號模型 57 3.3.2 發光二極體小訊號模型 58 3.4 發光二極體負載模擬 59 3.4.1 發光二極體單級線性模型 59 3.4.2 發光二極體多級線性模型 60 3.4.3 泰勒級數模擬 62 3.5 溫度對於負載模擬之影響 67 3.6 本文所使用之發光二極體燈組 69 第四章 系統整合之模擬與實測結果 71 4.1 前言 71 4.2 系統模擬 72 4.2.1 系統電路之模擬建置 72 4.2.2 模擬結果 76 4.3 系統整合之波形與效能實測結果 80 4.3.1 功率因數修正量測波形 81 4.3.2 開關切換與輸出量測波形 83 4.3.3 滿載之效率與功率因數實測結果統計 85 第五章 LED模擬與實測結果之比較 87 5.1 前言 87 5.2 實測LED負載與模擬結果比較 87 5.2.1 單級LED模擬與實作比較 87 5.2.2 多級LED模擬與實作比較 90 5.3 不同溫度下的負載比較 92 5.3.1 比較0℃時模擬與實作之結果 92 5.3.2 比較10℃時模擬與實作之結果 94 5.3.3 比較20℃時模擬與實作之結果 96 5.3.4 比較30℃時模擬與實作之結果 99 5.3.5 比較40℃時模擬與實作之結果 101 5.3.6 比較50℃時模擬與實作之結果 103 5.4 原型電路實體圖 106 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 110 參考文獻 112  

[1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Physical Review Letters, vol. 9, no. 9, pp. 366-368, Nov. 1962.
[2] J. Cardes, D. Garc, L. a, L. E, et al., “Low Cost Intelligent LED Driver for Public Lighting Smart Grids,” in New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on, pp. 1-6, 2013.
[3] Ray-Lee Lin, and Yi-Fan Chen, “Equivalent Circuit Model of Light-Emitting-Diode for System Analyses of Lighting Drivers,” IEEE Conference on IAS Annual meeting, pp. 1-5, 2009.
[4] L. Bor-Ren, W. Ta-Chang, and C. Huann-Keng, “Novel AC Line Conditioner for Power Factor Correction,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, pp. 168-179, 2004.
[5] Ray-Lee Lin, Chia-Chun Lee, and Shun-Yao Liu, “Taylor series expression based equivalent circuit model of LEDs for analysis of LED drivers system,” IEEE Conference on IAS Annual meeting, pp. 1-7, 2011.
[6] W. Huai and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” in Southeastcon '98. Proceedings. IEEE, pp. 348-353, 1998.
[7] C. A. Gallo, F. L. Tofoli, and J. A. C. Pinto, “Two-Stage Isolated Switch-Mode Power Supply with High Efficiency and High Input Power Factor,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 3754-3766, 2010.
[8] “Power factor correction (PFC) handbook, Rev. 5,” ON Semiconductor, 2014.
[9] L. Zheren and K. M. Smedley, “A Family of Continuous Conduction Mode Power Factor Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
[10] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 1856-1865, 2011.
[11] L. Huber, B. T. Irving, and M. M. Jovanovic, “Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 24, pp. 339-347, 2009.
[12] Y. Hu, L. Huber, M. M. Jovanovi, and x, “Single-Stage, Universal-Input AC/DC LED Driver with Current-Controlled Variable PFC Boost Inductor,” IEEE Transactions on Power Electronics, vol. 27, pp. 1579-1588, 2012.
[13] T. Yan, J. Xu, F. Zhang, J. Sha, and Z. Dong, “Variable-On-Time-Controlled Critical-Conduction-Mode Flyback PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 61, pp. 6091-6099, 2014.
[14] L. Zheren and K. M. Smedley, “A Family of Continuous Conduction Mode Power Factor Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
[15] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 1856-1865, 2011.
[16] L. Huber, B. T. Irving, and M. M. Jovanovic, “Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 24, pp. 339-347, 2009.
[17] L. Rossetto, G. Spiazzi, and P. Tenti, “Control Techniques for Power Factor Correction Converter,” In Proc. PEMC, pp. 1310-1318, Sept 1994.
[18] 吳義利,切換式電源轉換器 原理與實用設計技術 (實例設計導向),2 ed.: 文笙書局,2015。
[19] D. W. Hart and S. Y. Ou, Power Electronics, Annotated ed.: McGraw-Hill, 2011.
[20] STMicroelectronics, “Design Equations of High-Power-Factor Flyback Converters Based On the L6561,” Application Note, AN1059, September 2003.
[21] Mladen Ivankovic, Infineon Technologies North America (IFNA) Corp, “CrCM Flyback PFC Converter Design,” Design Note, V1.0, January 2013.
[22] Michael Weirich, Fairchild Semiconductor, “A High Power Flyback with Constant-Current Output for LED Lighting Applications,” The Global Power ResourceSM Center (GPRC) Europe, 2010.
[23] Leadtrend Technology Corporation, LD7830 Datasheet, Rev. 01a, Aug. 2012.
[24] L. Yang, X. Zhou, and A. Huang, “Design of a Transition Mode Controller for Flyback Converters,” in 2009 International Conference on Power Electronics and Drive Systems (PEDS), pp. 1188-1193, 2009.
[25] D. G. Lamar, M. Arias, M. M. Hernando, and J. Sebastian, “Using the Loss-Free Resistor Concept to Design a Simple AC-DC HB-LED Driver for Retrofit Lamp Applications,” IEEE Transactions on Industry Applications, vol. 51, pp. 2300-2311, 2015.
[26] M. S. Shur and R. Zukauskas, “Solid-State Lighting: Toward Superior Illumination,” Proceedings of the IEEE, vol. 93, pp. 1691-1703, 2005.
[27] N. Chen and H. S. H. Chung, “A Driving Technology for Retrofit LED Lamp for Fluorescent Lighting Fixtures with Electronic Ballasts,” IEEE Transactions on Power Electronics, vol. 26, pp. 588-601, 2011.
[28] (Aug 24, 2004). Why Drive White LEDs with Constant Current? Available:
https://www.maximintegrated.com/en/app-notes/index.mvp/id/3256
[29] W. Hongmin, L. Zhili, and D. Jing, “High-Power LED Constant-Current Driver Circuit Design and Efficiency Analysis,” in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 705-710, 2011.
[30] 林煒翔,「返馳式轉換器在低功率LED照明應用」,碩士,電機工程系,國立雲林科技大學,雲林縣,2013。
[31] 陳逸凡,「發光二極體升壓型驅動電路之系統模型建構」,碩士,電機工程系,國立成功大學,台南市,2009。
[32] Ray-Lee Lin, Shun-Yao Liu, Chia-Chun Lee, and Yi-Chun Chang, “Taylor-Series-Expression-Based Equivalent Circuit Models of LED for Analysis of LED Driver System,” IEEE Transactions on Industry Applications, vol. 49, pp. 1854-1862, 2013.
[33] Ray-Lee Lin, Jhong-Yan Tsai, Shun-Yao Liu, and Hsin-Wei Chiang, “Optimal Design of LED Array Combinations for CCM Single-Loop Control LED Drivers, ” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp. 609-616, 2015.
[34] Ray-Lee Lin, Yi-Chun Chang, and Chia-Chun Lee, “Optimal Design of LED Array for Single-Loop CCM Buck-Boost LED Driver,” IEEE Transactions on Industry Applications, vol. 49, pp. 761-768, 2013.
[35] Ray-Lee Lin, Jhong-Yan Tsai, J. M. Alonso, and D. Gacio, “Four-Parameter Taylor Series-Based Light-Emitting-Diode Model,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp. 581-588, 2015.
[36] Peter Baureis, “Compact modeling of electrical, thermal and optical LED behavior er,” Proceedings of ESSDERC, pp. 145-148, 2005.
[37] Cree Incorporation, XLamp ML-E Datasheet, Rev. 11F, 2010.
[38] 胡宏新,「半橋LLC諧振轉換器效率改善與系統研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2015。
[39] X. Wu, J. Yang, J. Zhang, and M. Xu, “Design Considerations of Soft-Switched Buck PFC Converter with Constant On-Time (COT) Control,” IEEE Transactions on Power Electronics, vol. 26, pp. 3144-3152, 2011.
[40] C. Tzuen-Lih, L. Li-Hsiang, H. Ching-Nan, C. Yu-Lun, and K. Jao-Hwa, “High Power Factor Flyback Converter for LED Driver with Boundary Conduction Mode Control,” in 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 2088-2093, 2010.
[41] B. White, H. Wang, Y. F. Liu, and X. Liu, “An Average Current Modulation Method for Single-Stage LED Drivers with High Power Factor and Zero Low-Frequency Current Ripple,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp. 714-731, 2015.
[42] P. Fang, Y. F. Liu, and P. C. Sen, “A Flicker-Free Single-Stage Offline LED Driver with High Power Factor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp. 654-665, 2015.
[43] K. I. Hwu, Y. T. Yau, and L. L. Lee, “Powering LED Using High-Efficiency SR Flyback Converter,” IEEE Transactions on Industry Applications, vol. 47, pp. 376-386, 2011.
[44] 吳律凱,「具同步整流功能之返馳式轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2015。
[45] 蔡右平,「高效率可調光之返馳式轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2016。
[46] 蔡宇宏,「準諧振控制電路及初次側調整控制器在充電器應用之研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2017。
[47] 鄒明璋,「抑制電能轉換器傳導EMI之新型抖頻技術」,博士, 電機工程系,國立臺灣科技大學,台北市,2015。

QR CODE