簡易檢索 / 詳目顯示

研究生: 李泰鑫
Tai-Hsin Lee
論文名稱: 自我對準指狀摻雜製程以應用於背面電極太陽能電池
Self-aligned interdigitated diffusion process for back-contact solar cell
指導教授: 李三良
San-Liang Lee
口試委員: 洪勇智
Yung-Jr Hung
洪儒生
Lu-Sheng Hong
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 太陽能電池指狀電極
外文關鍵詞: IBC solar cell, manufacture
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係自我對準指叉狀背面電極太陽能電池的製程應用與各個製程條件與相關結果之探討。相較於傳統的正反太陽能電池,指叉狀背面電極太陽能電池有許多如無正面遮蔽效應、減少串聯電阻等許多優點。本實驗在IBC太陽能電池的製程的部分一共分為六個主要的步驟,分別是N+擴散製程、電性絕緣區域、P+擴散製程、金屬電極製程、基底薄化之蝕刻製程、以及效率量測等六大主要步驟。
    本實驗亦針對各項參數條件對於製程進行的影響。實驗結果顯示,當熱擴散時間固定為30分鐘時在900°C時可得到19 Ω/sq之片電阻;而在電性絕緣的部分使用30%KOH蝕刻5分鐘後可得到厚度大約7.7μm及最佳之表面平坦度。而在基底薄化的部分,當厚度從280μm薄化至140μm時效率則有明顯的提升,目前本實驗之IBC太陽能電池可達到5.5%之效率,未來將可再隨著各製程步驟之最佳化進而提升效率。


    Due to both polarities of the metal electrodes on the rear side of the device, IBC solar cell exhibits some advantages over the conventional solar cell with metal contacts on both sides, such as increased short circuit current and improved series resistance. In the thesis self–aligned diffusion processes for intedigitated back- contact solar cell were studied. The fabrication of IBC solar cell includes six main steps: formation of N+ diffusion layer, electrical isolation, formation P+ contact layer, metallization, substrate thinning, and device characterization.
    We obtain a sheet resistance of 19Ω/sq by lifting the temperature at 900°C for 30min for emitter formation. Electrical isolation is done by realizing deep trenches between metal fingers with 30% KOH etching process. The etching depth is about 7.7μm with smooth surface. By thinning down the substrate from 280μm to 140 μm, the short circuit current of the solar cell increase due to finite carrier lifetime of the substrate.
    As-realized IBC solar cell has a short circuit current density of 22.75 mA/cm2, a open-circuit voltage of 554mV, a filling factor of 44.02%, and a ultimate efficiency of 5.5%.

    摘要 1 致謝 3 目錄 4 圖索引 7 表索引 9 第一章 緒論 10 1.1 前言 10 1.2 矽晶太陽能電池 13 1.3 論文架構 15 第二章 IBC太陽能電池 16 2.1 IBC太陽能電池簡介 16 2.2 文獻探討 18 2.3 太陽能電池基本工作原理 21 2.4 太陽能電池之等效電路 23 2.4.1 短路電流 24 2.4.2 開路電壓 25 2.4.3 串聯電阻 25 2.4.4 並聯電阻 27 2.5 太陽能電池參數介紹 28 2.6 各種損失機制 30 2.6.1 複合損失 31 2.6.2 光學損失 33 2.6.3 電阻損失 35 第三章 實驗相關介紹 37 3.1 實驗元件製程步驟 37 3.1.1 光罩設計 38 3.1.2 製程步驟 39 3.2 使用高溫爐管進行熱擴散與退火製程 45 3.3 電子束蒸鍍機之P+擴散層與金屬層的沉積 47 3.4反應式離子蝕刻機來進行電性絕緣與奈米線測試 49 3.5 使用太陽光模擬器進行特性曲線之量測 51 第四章 實驗結果分析與參數討論 53 4.1擴散 53 4.2 不同蝕刻條件對於電性隔離的影響 56 4.2.1 乾式蝕刻( R.I.E. ) 56 4.2.2 濕式蝕刻( KOH ) 58 4.3 基底厚度變化對於效率之影響 63 第五章 結論與未來發展 68 參考文獻 70

    參考文獻
    [1] http://www.solartech.com.tw/tw/product_sputtering_targets_for_thin_film_solar_cell01.html
    [2] http://www.nrel.gov/
    [3] R.M. Swanson, “Approaching the 29 % limit efficiency of silicon solar cells,” In: Proc. 31st IEEE Photovolt. Spec. Conf., Lake Buena Vista, USA, pp. 889–894 (2005)
    [4] J. Zhao, A. Wang, M.A. Green, “24.5% Efficiency silicon PERT cells on CZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt.: Res. & Appl. 7, 471–474 (1999)
    [5] M.D. Lammert and R.J. Schwartz, “The interdigeitated back contact solar cell: a silicon solar cell for use in concentrated sunlight,” IEEE Transactions on Electron Devices, ED-24 (4), 337-42, (1977).
    [6] R.M. Swanson, A.K. Beckwith, R.A. Crane, W.D. Eades, Y.H. Kwark, and R.A. Sinton, “Point-contact silicon solar cells,” IEEE Transactions on Electron Devices, 31 (5), 661-4, (1984).
    [7] P. Verlinden, F. Van de Wiele, G. Stehelin, and J.P. David, “Optimized interdigitated back contact (IBC) solar cell for high concentrated sunlight”, in Proceedings of the 18th IEEE Photovoltaic Specialists Conference, Las Vegas, Nevada, USA, 55-60 (1985).
    [8] W. P. Mulligan, et al. “Manufacture of solar cells with 21% efficiency, ” in Proc. 19th EU PVSEC 387–390 (2004).
    [9] http://pveducation.org
    [10] 格林, 曹昭陽, 太陽電池 工作原理、技術與系統應用, 五南出版社(2009).
    [11] http://www.mpoweruk.com/solar_power.htm
    [12] 宋慶軍、熊卓, 太陽能電池串聯和並聯電阻問題的探討
    [13] http://www.ni.com/white-paper/7230/en/
    [14] E.V. Kerschaver, and G. Beaucarne, “Back-contact Solar Cells: A Review, Progress in Photovoltaics : Research and Applications,” 14:107–123, (2006).
    [15] M. Lu, U. Das, S. Bowden, S. Hegedus, and R. Birkmire “Optimized interdigitated back contact (IBC) solar cell for high concentrated sunlight,” Photovoltaic Specialists Conference (PVSC), 34th IEEE, (2009).
    [16] O. Semonin, J.M. Luther and M.C. Beard, “Multiple exciton generation in a quantum dot solar cell,” SPIE Newsroom, (26 March 2012).
    [17] 翁敏航, 太陽能電池-原理、元件、材料、製成與檢測技術, 東華出版社(2012).
    [18] B. Van Zeghbroeck, Principles of Semiconductor Devices, (2011).
    [19] F. Granek, “High efficiency back contact back junction silicon solar cells,” Fraunhofer Institut fur Solare Energiesysteme (ISE), (2009).
    [20] D.K. Schroder, R.N. Thomas, and J.C. Swartz,” Free carrier absorption in silicon, ” IEEE Transactions on Electron Devices, ED-25 (2), 254-61, (1978).
    [21] W. R. Fahmer, Nanotechnology and Nanoelectronics: Materials, Devices, Measurement Techniques.
    [22] https://www.memsnet.org/about/processes/etch.html
    [23] A. Cuevas, R.A. Sinton, Prog. Photovolt: Res. Appl. 5, 79 (1997).
    [24] K.Ali, S.A. Khan, M. Z. Mat Jafri, “Spin-on doping (SOD) and diffusion temperature effect on recombinations/ideality factor for solar cell applications,” Chalcogenide Lett.. 9, (11 ), 457 –463 (2012).
    [25] http://en.wikipedia.org/wiki/Theory_of_solar_cells
    [26] A.D. Dhass, E. Natarajan, Lakshmi Ponnusamy, “Influence of Shunt Resistance on the Performance of Solar Photovoltaic Cell, ” IEEE 382 – 386, (2012).
    [27] N Johan, M.M.Shahimin, S Shaari, “Texturisation of Single Crystalline Silicon Solar Cell, ” IEEE, (2010)
    [28] M. Hossain, H.H. ABU-SAFE, H. Naseem, and W.D. Brown, “The Effects of Hydrogen on Aluminum-Induced Crystallization of Sputtered Hydrogenated Amorphous Silicon”, Journal of Electronic Materials, Vol. 35, No. 1, (2006).
    [29] D. Zielke, J.H. Petermann, F. Werner, B. Veith, R. Brendel1, and J. Schmidt , “21.7 % Efficient Perc Solar Cells with AlOX Tunneling Layer”, 26th European Photovoltaic Solar Energy Conference and Exhibition, (2011)

    QR CODE