簡易檢索 / 詳目顯示

研究生: 沈宜璇
I-hsuan Shen
論文名稱: 應用事件相關電位探討報告順序對多元向度刺激辨識之影響
Event-Related Potential as a Measure of the Effects of Report Order on Multidimensional Stimulus Identification
指導教授: 謝光進
Kong-king Shieh
口試委員: 李永輝
none
紀佳芬
none
許勝雄
none
李再長
none
黃雪玲
none
王茂駿
none
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 多元向度刺激辨識報告順序練習效果作業轉換事件相關電位
外文關鍵詞: training effect, ERP, task switch, multidimensional stimulus identification, report order
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

視覺顯示是人機系統設計重要的一環,而多元向度刺激設計,是一種利用有限空間、促進資訊整合的有效方法。其中報告順序的安排,是影響操作者資訊編碼與處理績效的重要因素。經由行為反應績效可以推論報告順序的良窳,然而若能以更直接的方式,如客觀的腦波量測(Electroencephalogram; EEG)來探討報告順序對於多元向度刺激辨識之影響,所得的結果應更為可靠。
本研究共有兩個實驗,第一個實驗應用腦波量測中的事件相關電位探討報告順序及練習效果對於多元向度刺激辨識之影響。第二個實驗採受試者內設計,應用事件相關電位探討報告順序與作業轉換對於多元向度刺激辨識之影響。
實驗一結果發現報告順序會影響多元向度辨識的速度,符合長期的語文習慣,有較高的刺激-反應相容性之報告順序,反應時間會較快。以事件相關電位而言,報告順序效果則見於事件相關電位後期成分。不符合長期的語文習慣的報告順序,語意較不恰當,有較大的N2、N400振幅,顯示當採刺激與反應相容性低的報告順序時,受試者認知上的負荷或抑制較高。練習使反應時間減少,在練習初期減少幅度最大,但隨練習之增加,降幅減少。練習效果特別顯示在事件相關電位早期N1、P2等成分,N1、P2不減反增,顯示多元向度辨識較為複雜,雖經過練習,在本實驗中有限的練習時間內尚未熟練。實驗二中報告順序為受試者內因素,受試者需依照指示以兩種報告順序交互反應,兩種報告順序彼此處於競爭狀態,因此反應時間明顯變長,適當的報告順序仍有較快的反應時間,不符合長期的語文習慣的報告順序其轉換成本較大,顯示其刺激反應相容性較低。由事件相關電位顯示,不符合長期的語文習慣的報告順序有較大N400振幅之趨勢。
本研究結果顯示,在多元向度刺激辨識中,符合語文習慣、有較高刺激反應相容性的報告順序,在反應績效、事件相關電位及轉換成本都有較佳的表現。


The problems in designing displays have been among the most important topics in human factors engineering. Compacting information into a single multidimensional stimulus can be an effective way of utilizing limited display space and reducing clutter. In a multidimensional display, the order of reporting dimensional values may play an important role in the accuracy and speed of identifying targets. However, all reaction time investigations must make inferences about the processes between stimulus and response by looking at the final product of the response. To augment this behavioral measurement, the event-related brain potential (ERP) has been used to provide a direct estimate of the timing of cognitive processes.
Two experiments were conducted in the study. Experiment 1 used ERP to investigate the effects of report order on multidimensional stimuli identification. Experiment 2 used task switch paradigm to investigate ERP and performance when order of reporting stimulus dimensions was a within-subject factor.
In Experiment 1, subjects tended to respond faster if a relative high S-R compatible, natural language-appropriate order of reporting the dimensional attributes was employed. For ERP measurement, the results showed greater N2 and N400 neural activities for less appropriate report order. Subjects seemed to put more mental effort and showed more inhibition in less appropriate report order. Practice reduced response times with smaller improvements as the number of practice increased. The effect of training was mainly in the early stage of ERP components, i.e., N1 and P2 of cognitive processing. The mean amplitude of N1 and P2 increased instead of decreased with practice. It seemed that ERPs of participants didn’t habituate during the training sessions. In Experiment 2, the order of report was a within-subject factor. Because of response competition, response times were slower. And switch cost increased significantly greater for a less appropriate report order. For ERPs measurement, the results showed greater N400 neural activities for less appropriate report order.
It seems that participants showed better performance in behavior data, better neural correlates in ERPs, and less switch cost when they responded in a more appropriate and high stimulus-response compatible report order.

目 錄 摘要............................................................................... Ⅰ Abstract................................................................................................ III 誌謝.............................................................................. V 目錄.............................................................................. VI 圖索引........................................................................... X 表索引........................................................................... XI 第一章 緒論 1.1 研究動機................................................................ 1 1.2 研究目的................................................................ 3 1.3 研究方法與步驟...................................................... 3 1.4 研究架構................................................................ 5 第二章 文獻探討 2.1 多元向度刺激之報告順序........................................ 6 2.1.1 多元向度刺激的應用.......................................... 6 2.1.2 報告順序............................................................ 9 2.2 事件相關電位的理論與研究....................................... 12 2.2.1 腦電圖之歷史回顧............................................... 12 2.2.2 腦電圖的來源..................................................... 12 2.2.3腦波之量測與記錄................................................ 15 2.2.4腦波分析方法....................................................... 17 2.2.5 事件相關電位(ERP)提取之技術原理............................ 18 2.2.6 事件相關電位(ERP)的概念和特點.......................... 20 2.2.7 事件相關電位(ERP)之應用. ................................. 22 2.3 知覺學習相關理論與研究.......................................... 26 2.3.1 視覺認知通路...................................................... 26 2.3.2 學習過程的變化.................................................. 29 2.3.3 有關學習之ERP研究............................................. 30 2.4 反應/不反應作業中N2成分與抑制作用的關係................ 31 2.4.1 反應/不反應作業範式........................................... 31 2.4.2 抑制理論............................................................ 31 2.4.3 相容性與抑制作用.............................................. 32 2.5 作業轉換................................................................. 33 2.5.1 作業轉換範式..................................................... 34 2.5.2 作業轉換機制的假說............................................ 34 2.5.3 不對稱的轉換損失................................................ 35 2.6 總結...................................................................... 36 第三章 實驗1:應用事件相關電位探討不同報告順序的練習效果對於多元向度刺激辨識之影響 3.1 前言........................................................................ 38 3.2 研究方法................................................................. 38 3.2.1 受試者.............................................................. 38 3.2.2 實驗刺激符號..................................................... 38 3.2.3 實驗設備............................................................... 40 3.2.4 實驗設計.............................................................................. 40 3.2.5 實驗程序.............................................................................. 41 3.2.6 電生理訊號收集................................................................. 42 3.2.7 資料分析............................................................................. 43 3.3 結果....................................................................... 44 3.3.1 行為資料.............................................................. 44 3.3.2 事件相關電位(ERP)資料......................................... 49 3.4 討論...................................................................... 58 第四章 實驗2:應用事件相關電位探討報告順序與作業轉換對於多元向度刺激辨識之影響 4.1 前言...................................................................... 62 4.2 研究方法............................................................... 62 4.2.1 受試者............................................................... 62 4.2.2 實驗刺激符號與設備............................................... 63 4.2.3 實驗設計............................................................................ 63 4.2.4 實驗程序.......................................................... 63 4.2.5 電生理訊號收集................................................................ 64 4.2.6 資料分析............................................................................. 64 4.3 結果...................................................................... 65 4.3.1 行為資料........................................................... 65 4.3.2 事件相關電位(ERP)資料................................................... 70 4.4 討論...................................................................... 76 第五章 結論與建議 5.1 結論....................................................................... 79 5.2 建議與未來研究方向............................................... 81 參考文獻 ...................................................................... 83 附錄 附錄3-1: 實驗一之實驗指導語..................................... 91 附錄4-1: 實驗二之實驗指導語。.................................... 93 圖索引 圖 1-1 研究架構圖。.............................................................. 5 圖 2-2 國際化10-20系統電極位置。................................................... 16 圖 2-2 聽覺 EP 和 ERPs 的基本波形.......................................... 21 圖 2-3 視覺認知通路。............................................................ 28 圖 3-1 九個以部分向度與形狀向度所定義的刺激符號。............... 39 圖 3-2 兩種反應鍵盤。........................................................... 41 圖 3-3 NeuroScan公司的Qcap32電極帽32電極位置。.................... 43 圖 3-4 反應時間與反應正確率在三段期次之平均值變化圖。...... 48 圖 3-5 報告順序Part/Shape與報告順序Shape/Part三個練習期次九個電極位置之總平均電位(Grand Average)。......................... 51 圖 3-6 N1平均振幅於各電極方位在三段期次的變化圖。............. 53 圖 3-7 P2平均振幅於各電極方位在三段期次的變化圖。............. 54 圖 3-8 N2平均振幅於各電極方位在三段期次的變化圖。.................. 56 圖 3-9 N400平均振幅於各電極方位在三段期次的變化圖。.............. 57 圖 4-1 兩種報告順序分別在轉換作業及重複作業之RT1、RTT。......... 69 圖 4-2 兩組報告順序之總平均電位在各個電極之比較。綠色波形表報告順序Part/Shape,紅色波形表報告順序Shape/Part。.......... 71 圖 4-3 兩組報告順序之總平均電位在各個電極之比較。綠色波形表轉換作業,紅色波形表重複作業。.................................... 72 表索引 表 2-1 國際10-20制電極位置之中英文名稱。....................... 16 表 3-1 不同報告順序水準在三段練習期次的反應時間(RT1、RT2、RTT)與反應正確率(CP)之平均值及標準差。...... 45 表 3-2 表3-2 RT1之變異數分析。....................................... 46 表 3-3 RT2之變異數分析。............................................... 47 表 3-4 RTT之變異數分析。................................................ 48 表 3-5 CP之變異數分析。.................................................. 49 表 3-6 N1 變異數分析。.................................................... 52 表 3-7 P2 變異數分析。..................................................... 54 表 3-8 N2 變異數分析。.................................................... 55 表 3-9 N400 變異數分析。.................................................. 57 表 4-1 報告順序與作業型式之反應時間(毫秒)與反應錯誤率之平均值及標準差。................................................ 65 表 4-2 RT1之變異數分析。................................................. 66 表 4-3 RT2之變異數分析。................................................. 67 表 4-4 RTT之變異數分析。................................................. 68 表 4-5 反應錯誤率(EP)之變異數分析。............................... 70 表4-6 N1 變異數分析。..................................................... 72 表4-7 P2 變異數分析。..................................................... 73 表4-8 N2 變異數分析。..................................................... 74 表4-9 N400 變異數分析。................................................. 75

一、中文部分
李江山、孫慶文、陳一平、陳建中、黃淑麗、黃榮村、葉素玲、襲充文、櫻井正二郎(1999)視覺與認知—視覺知覺與視覺運動系統。台北:遠流。
趙侖(2004)ERP實驗教程。中國:天津社會科學院出版社。
魏景漢、羅躍嘉(2002)認知事件相關電位教程。中國:經濟日報。

二、英文部分
Aine, C. J., & Harter, M. R. (1986) Visual event-related potentials to colored patterns and color names: attention to features and dimensions. Electroencephalography and Clinical Neurophysiology, 54, 228-245.
Allport, D. A. (1971) Parallel encoding within and between elementary stimulus dimensions. Perception and Psychophysics, 10, 104-108.
Allport, A., Styles, E. A., & Hsieh, S. (1994) Shifting intentional set: exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance 15: conscious and nonconscious information processing. Cambridge, MA: MIT Press. Pp. 421–452.
Barnett, B., & Wickens, C. D. (1988) Display proximity in multicue information integration: the benefits of boxes. Human Factors, 30, 15-24.
Barrett, S. E., & Rugg, M. D. (1990) Event-related potentials and the semantic matching of pictures. Brain and Cognition, 14, 201-212.
Cacioppo, J. T., & Tassinary, L. G. (1990). Principles of psychophysiology: Physical, social, and inferential elements. Cambridge, New York: Cambridge University Press.
Carswell, C. M., & Wickens, C. D. (1987) Information integration and the object display: an integration of task demands and display superiority. Ergonomics, 30, 511-527.
Carswell, C. M., & Wickens, C. D. (1996) Mixing and matching lower-level codes for object displays: evidence for two sources of proximity compatibility. Human Factors, 38, 1-23.
Ciesielski, K. T. & French C. N., (1989) Event-related potentials before and after training: chronometry and lateralization of visual N1 and N2. Biological Psychology, 28, 227-238.
Christ, R. E. (1975) Review and analysis of color coding research for visual displays. Human Factors, 17, 542-570.
Christ, R. E., & Corso, G. M. (1983) The effects of extended practice on the evaluation of visual display codes. Human Factors, 25, 71-84.
Coles, M. G. H., & Rugg, M. D. (1995) Event-related brain potentials: an introduction. In M. D. Rugg & M. G. H. Coles (Ed.), Electrophysiology of mind: event-related brain potential and cognition. New York: Oxford University Press. Pp. 1-26.
Converse, S. A., Kozar, S., & Batten, D. (1992) Color coding to facilitate performance of focused attention tasks with object displays. In Proceedings of the 36th Annual Meeting of the Human Factors Society. Santa Monica, CA: Human Factors Society. Pp.l493-1497.
Ding, Y., Song, Y., Fan, S., Qu, Z., & Chen, L. (2003) Specificity and generalization of visual perceptual learning in human: an event-related potential study. NeuroReport, 14, 587-590.
Duncan, J. (1984) Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501-517.
Egeth, H. E., & Pachella, R. (1969) Multidimensional stimulus identification. Perception and Psychophysics, 5, 341-346.
Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999) ERP components in Go/NoGo tasks and their relation to inhibition. Acta Pschology (Amst), 101: 267-291.
Gilbert, S. J., & Shallice, T. (2002) Task switching: a PDP model. Cognitive Psychology, 44(3), 297–337.
Glaser, W. R., & Glaser, M. O. (1989) Context effect in Stroop-like word and picture processing. Journal of Experimental Psychology: General, 118, 13-42.
Harris, C. S., & Haber, R. N.(1963) Selective attention and coding in visual perception. Journal of Experimental Psychology, 65, 328-333.
Harter, M. R., & Aine, C. J. (1984) Brain mechanisms of visual selective attention. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention. New York: Academic Press. Pp. 293-321.
Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990) Visual event-related potentials index focus attention within bilateral stimulus arrays: I. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75, 511-527.
Hillyard, S. A., Mangun, G. R., Woldorff, M. G., & Luck, S. J. (1995) Neural systemsec. mediating selective attention. In M. S. Gazzaniga (Ed.), The cognitive neurosciences. Cambridge, MA: MIT Press. Pp. 665-681.
Holcomb, P. J., & McPherson, W. B. (1994) Event-related brain potentials reflect semantic priming in an object decision task. Brain and Cognition, 24, 259-276.
Jodo, E. & Kayama, Y. (1992) Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalography and Clinical Neurophysiology, 82, 477-482.
Kahneman, D. (1973) Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.
Kahneman, D., & Treisman, A. (1984) Changing views of attention and automaticity. In R. Parasurman and D .R. Davies (Eds.), Varieties of Attention. New York: Academic Press. Pp. 29-61.
Kenemans, J. L., Kok, A., & Smulders, F. T. Y. (1993) Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88, 51-63.
Kenemans, J. L., Smulders, F. T. Y., & Kok, A. (1995) Selective procession of two-dimensional visual stimuli in young and old subjects: an electrophysiological analysis. Psychophysiology, 32, 108-120.
Kok, A. (1986) Effects of degradation of visual stimuli on components of the event-related potentials in Go/Nogo reaction tasks. Biological Psychology, 23, 21-38.
Kutas, M., & Hillyard, S. A. (1980) Reading senseless sentence: brain potential reflect semantic incongruity. Science, 207, 203-205.
Lappin, J. S. (1967) Attention in the identification of stimulus in complex visual displays. Journal of Experimental Psychology, 75, 321-328.
Lawrence, D. H., & Laberge, D. L. (1956) Relationship between recognition accuracy and order of reporting stimulus dimensions. Journal of Experimental Psychology, 51,12-18.
Luck, S. J. (2005) Ten simple rules for designing ERP experiment. In T. C. Handy (Eds.), Event-related potential: a methods handbook. Cambridge, MA: MIT Press. Pp. 17–32.
Mangun, G. R., Hillyard, S. A., & Luck, S. J. (1993) Electrocortical substrates of visual selective attention. In D. Meyer & S. Kornblum (Eds.), Attention and performance: XIV. Hillsdale, NJ: Erlbaum.
McClain, L. (1983) Stimulus-response compatibility affects auditory Stroop interference. Perception & Psychophysics, 33, 266-270.
Meiran, N. (1996) Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423–1442.
Meuter, R. F. I., & Allport, A. (1999) Bilingual language switching in naming: asymmetrical costs of language selection. Journal of Memory and Language, 40, 25–40.
Monsell, S., Yeung, N., & Azuma, R. (2000) Reconfiguration of task-set: is it easier to switch to the weaker task? Psychological Research, 63, 250–264.
Näätänen, R. (1992) Attention and brain function. Hillsdale, NJ: Erlbaum.
Näätänen, R., & Picton, T. (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24, 375-425.
Neisser, U. (1967) Cognitive Psychology. New York: Appleton- Century-Croft.
O’Donnell, B. F., Swearer, J. M., Smith, L. T., Hokama, H., & McCarley, R. W. (1997) A topographic study of ERP elicited by visual feature discrimination. Brain Topography, 10, 133-143.
Osga, G. (1982) An evaluation of identification performance for Raster Scan
generated NTDS symbology. (Final Report) San Diego, CA: Naval Ocean System Center.
Otten, L. J., & Rugg, M. D. (2005)Interpreting event-related brain potentials. In T. C. Handy (Eds.), Event-related potential: a methods handbook. Cambridge, MA: MIT Press. Pp. 3–16.
Pfefferbaum, A., Ford, J. M., Weller, B. J., Kopell, B. S. (1985) ERPs to response production and inhibition. Electroencephalography and Clinical Neurophysiology, 60: 23–34.
Picton, T. W., Campbell, K. B., Baribeau-Braun, J., & Proulx, G. B. (1978) The neurophysiology of human attention: a tutorial review. In J. Requin (Ed.), Attention and performance: VII. Hillsdale, NJ: Erlbaum. Pp. 429-467.
Potts, G. F., Liotti, M., Tucker, D. M., & Posner, M. I. (1996) Frontal and inferior temporal cortical activity in visual target detection: evidence from high spatially sampled event-related potential. Brain Topography, 9, 3-14.
Ritter, W., Simson, R., & Vaughan, H. G. (1983) Event-related potential correlated of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology, 20, 168-179.
Ritter, W., Simson, R., Vaughan, H. G., & Friedman, D. (1979) A brain event related to the making of a sensory discrimination. Science, 203, 1358-1361.
Rogers, R. D., & Monsell, S. (1995) Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.
Sanders, M. S., & McCormick, E. J.(1992) Human Factors in Engineering and Design. 7th ed. New York: McGraw-Hill.
Shieh, K. K., & Shen, I. H. (2004) Report order and identification of multidimensional stimuli: a study of event-related brain potentials. Perceptual and Motor Skills, 98, 1427-1437.
Shieh, K. K., & Chen, F. F. (2002) Effects of report order and stimulus type on
multidimensional stimulus identification. Perceptual and Motor Skills, 95, 783-794.
Shieh, K. K., Lai, C. J., & Ellingstad, V. S. (1996) Effects of report order, identification method, and stimulus characteristics on multidimensional stimulus identification. Perceptual and Motor Skills, 82, 99-111.
Shieh, K. K., & Lai, C. J. (1996) Effects of practice on identification of multidimensional stimuli. Perceptual and Motor Skills, 83, 435-448.
Shieh, K. K., & Lai, C. J. (1997) Multidimensional stimulus identification: instructing subjects in the order of reporting stimulus dimensions. Perceptual and Motor Skills, 84, 995-1008.
Shiffrin, R. M., & Schneider, W. (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 127-190.
Skrandies, W., Lang, G, & Jedynak, A. (1996) Sensory thresholds and neurophysiological correlates of human perceptual learning. Spatial Vision, 9, 475-489.
Smid, H. G., Jakob, A., & Heinze, H. J. (1999) An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology, 36, 264-279.
Song, Y., Ding, Y., Fan, S., & Chen, L. (2002) An event-related potential study on visual perceptual learning under short-term and long-term training conditions. NeuroReport, 13, 2053-2057.
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965) Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187-1188.
Taylor, F. M. (1987) Workload management in military cockpit presents insighs. In Proceedings on Symposium in Military Aircraft. London: Royal Aeronautical Society.
Tovée, M. J. (1998) The speed of thought: information processing in the cerebral cortex. New York: Springer-Verlag.
Tsang, P. S., & Bates, W. E. (1990) Resource allocation and object displays. In Proceedings of the 34th Annual Meeting of the Human factors Society. Santa Monica, CA: Human Factors Society. Pp. 1484-1488.
Van Petten, C. & Kutus, M. (1987) Ambiguous words in context: an event-related potential analysis of the time course of meaning activation. Journal of Memory and Language, 26, 188-208.
Vogel, E. K. & Luck, S. J. (2000) The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190-203.
Wickens, C. D. (1984) Engineering psychology and human performance. Columbus, OH: Merrill..
Wickens, C. D., & Andre, A. D. (1990) Proximity compatibility and information display: effects of color, space, and objectness on information integration. Human Factors, 32, 61-77.
Wickens, C. D., & Carswell, C. M. (1995) The proximity compatibility principle: its psychological foundation and its relevance to display design. Human Factors, 37, 473-494.
Woods, D., Wise, J., & Hanes, L. (1981) An evaluation of nuclear power plant safty parameter display systems. In Proceedings of the Human Factors Society 25th Annual Meeting. Santa Monica, CA: Human Factors Society. Pp. 110-114.

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE