簡易檢索 / 詳目顯示

研究生: 李典翰
Dian-Han Li
論文名稱: 動態混合鍍膜對鎂合金電漿電解氧化處理之研究
Study on Plasma Electrolysis Oxidation treatment of Magnesium Alloy (AZ91D) by Dynamic Hybrid Coating
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 電漿電解氧化技術鎂合金電流比週期電荷比動態混合鍍膜
外文關鍵詞: plasma electrolytic oxidation, magnesium alloy, current ratio, cycle, charge ratio, dynamic hybrid coating
相關次數: 點閱:431下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討AZ91D鎂合金進行電漿電解氧化 (Plasma Electrolytic Oxidation, PEO) 鍍膜中,週期中工作及休息時間的重要性以及動態混合鍍膜所帶來的效益。回顧以往弱工作現象的論文,大多沒有針對參數做進一步的研究,故無法找出真正影響弱工作現象的關鍵點,若能摸清發生弱工作現象 (Soft regime)所需要的參數條件及參數所代表的物理意義,必能預期某參數下所得到的相的特性。以往的研究,在參數的調整中,若要發生弱工作現象,有的控制電流比,有的探討電荷比,所得結果亦莫衷一是;因此本研究主張電流比 (IR)及電荷比 (CR)都必須一起納入考量。實驗結果顯示,電流比在大於1時 (IR=1.1)無論電荷比 (CR)的大小,實驗時間一小時內皆不會發生弱工作現象;電流比在小於1時 (IR=0.9),最快6分鐘時即會進入弱工作現象。電荷比 (CR)是正反向電流比及週期積分面積的比值,在固定電流大小下,藉由正反向工作週期值的調整能微調弱工作現象準確的發生時間,在電流比大於1時 (IR=1.1),電荷比呈現出越小越早發生弱工作現象;在電流比小於1時 (IR=0.9),電荷比則呈現出越大越早發生弱工作現象。
為定量討論電流比及電荷比的影響。本研究的參數中,所有點座標皆是固定正電流 (I+)為1.3並調整負電流 (I-)而獲得不同的IR值 (0.7、0.9、1.1、1.3),除此之外週期中的陽極工作時間 (ton+)及陽極休息時間 (toff+)皆固定在520及640 µs,藉此所有實驗結果之變數原因都將指向為負週期所帶來的影響,藉由調整ton-獲得不同的CR值 (1.25、1.36、1.47),於此IR及CR共12個座標組成作為後續動態混合鍍膜的圭臬。本實驗結果顯示,在IR=1.3, CR=1.47下膜層外層為多孔結構並有著超過55%的MgAl2O4相含量,此參數能獲得最大的向外生長膜層平均厚度 (79.34 µm),在機械性質上有著最好的前景,腐蝕阻抗測試中的RP值為5.379*107 Ω/cm2;在IR=0.9, CR=1.25時向外生長膜層平均厚度僅有31.49 µm,但由於進入弱工作區域而有向內生長的緻密膜層,向內生長膜層平均厚度為178.33 µm,在腐蝕阻抗測試中的RP值提升到9.950*109 Ω/cm2。藉由電流比、電荷比及週期的控制,在鎂合金膜層性質上已達到一個新的水平。
在進一步的動態混合鍍膜中,分別採用不同參數以前後10+20分鐘接續的方式進行實驗。實驗結果顯示,在使用動態混合鍍膜製程後 (IR=1.3, CR=1.47) + (IR=0.9, CR=1.25),相較單一參數的製程 (IR=1.3, CR=1.47),腐蝕阻抗從5.379*107 Ω/cm2提升到3.838*109 Ω/cm2,且向外生長膜層平均厚度相較單一參數的製程 (IR=0.9, CR=1.25)從31.49 µm提升到42.76 µm;而前後順序顛倒的動態混合鍍膜製程中 (IR=0.9, CR=1.25) + (IR=1.3, CR=1.47),雖說相較前述動態混合鍍膜腐蝕阻抗下降了2個次方 (4.812*107)與單一參數的製程 (IR=1.35, CR=1.47)相當,但向外生長膜層平均厚度上也從79.34 µm稍微提升到81.78 µm。也就是說使用動態混合鍍膜法,能將既有的膜層性質再作進一步的改良。
以後製程的時間為參數的實驗中,以IR=0.9, CR=1.25, 10 min or IR=0.9, CR=1.47, 10 min為前製程,IR=1.35, CR=1.47為後製程,此兩組腐蝕阻抗皆隨後製程時間的增加而越來越低;但若以IR=1.3, CR=1.47, 10 min為前製程,IR=0.9, CR=1.25, or IR=0.9, CR=1.47為後製程,此兩組皆是隨著後製程時間的增加,腐蝕阻抗呈現先升後降的結果,在 (IR=1.35, CR=1.47) + (IR=0.9, CR=1.25)這組中,在鍍膜時間10+10分鐘下腐蝕阻抗最終提升到4.049*1010 Ω/cm2。即製程時間的掌控及製程上先後順序的選擇能決定膜層的優劣。同時也顯示出動態混合鍍膜製程對於PEO具有一定的發展潛力。


This thesis discusses the importance of cycle and the benefits of dynamic hybrid coating in the plasma electrolysis oxidation (PEO) of AZ91D magnesium alloy. Most of the previous papers did not do further research on the parameters, so it is impossible to find the key points that really affect the Soft regime. If we can figure out the parameter conditions and the physical significance of the parameters required for the occurrence of Soft regime, we can expect the properties of the film.
Experimental results show that when the current ratio is greater than 1 (IR=1.1), no matter how small the charge ratio (CR) is, Soft regime will not occur within one hour; when the current ratio is less than 1 (IR=0.9), the fastest 6 minutes will enter the stage of Soft regime. On the other hand, when the current ratio is greater than 1 (IR=1.1), the Soft regime occurs earlier as the charge ratio is smaller; when the current ratio is less than 1 (IR=0.9), the Soft regime occurs earlier as the charge ratio is bigger.
In the parameters of this study, the I+ of all point coordinates is fixed at 1.3 and I- is adjusted to obtain different IR values (0.7, 0.9, 1.1, 1.3). In addition, ton+ and toff+ are fixed at 520 µs and 640 µs, and the ton- is adjusted then it can obtain different CR values (1.25, 1.36, 1.47). IR and CR constitute 12 working conditions in the first and the second quadrants of the coordinates for the subsequent dynamic hybrid coating. The results of this experiment show that the film has more than 55% MgAl2O4 phase at IR=1.3, CR=1.47, and it can obtain the maximum thickness of the outgrowth film (79.34 µm), which has the best prospects in mechanical properties. The RP value in the corrosion resistance test is 5.379*107 Ω/cm2; The thickness of the outgrowth film is only 31.49 µm at IR=0.9, CR=1.25, but there is a dense ingrowth film due to entering the Soft regime. The thickness of the inward-growth film is 178.33 µm. The RP value of the coating is increased to 9.950*109 Ω/cm2 in the corrosion resistance test.
Two different sets of parameters were used in the dynamic hybrid coating, and the experiment was conducted in a sequential manner that the former is 10 minutes, the latter is 20 minutes. The experimental results show that the dynamic hybrid coating process (IR=1.3, CR=1.47, 10 min + IR=0.9, CR=1.25, 20 min) compared with a single parameter process (IR=1.3, CR=1.47, 30 min), the corrosion resistance from 5.379 *107 Ω/cm2 increased to 3.838*109 Ω/cm2, and the thickness of the outward-growth film layer was increased from 31.49 µm to 42.76 µm compared to the single parameter process (IR=0.9, CR=1.25, 30 min).
The reverse order of the dynamic hybrid coating process (IR=0.9, CR=1.25, 10 min + IR=1.3, CR=1.47, 20 min), although compared to the previous parameter (IR=1.3, CR=1.47, 10 min + IR=0.9, CR=1.25, 20 min) decreased by ten to the power of two (4.812*107 Ω/cm2) in the corrosion resistance test, which is equivalent to a single parameter process (IR=1.35, CR=1.47, 30 min), but the thickness of the outgrowth film layer also increased from 79.34 µm to 81.78 µm.
In the experiment with the post-process time as the working parameter, under the experiment with IR=1.3, CR=1.47, 10 min as the previous process, as the post-process time increases, the corrosion resistance will show the results of first rise and then fall, but if IR=0.9, CR=1.25 or 1.47, 10 min is the experiment of the previous process, the corrosion resistance is lower as the process time increases.

摘要 I Abstract III 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1鎂金屬簡介 3 2.2電漿電解氧化發展史 4 2.3閥金屬的定義 4 2.4電漿電解氧化的原理與機制 8 2.5 Arc regime與Soft regime之行為與成膜機制 10 2.6 PEO電性參數 12 2.6.1電流模式對膜層的影響 14 2.6.2脈衝模式建立的目的 15 2.6.3電流比的物理意義 16 2.6.4脈衝週期的物理意義 16 2.6.5電荷比的物理意義 17 2.6.6電流密度對Soft regime發生時間的影響 17 2.7動態混合鍍膜 19 2.8電解液的影響以及涉及的電化學 22 第三章 實驗方法 25 3.1實驗藥品及設備 25 3.1.1藥品規格 25 3.1.2設備規格 25 3.2實驗流程 30 3.2.1試片規格及預處理 30 3.3實驗設計 31 3.3.1電解液設計 31 3.3.2溫度的控制 31 3.3.3電性參數設計 32 3.4分析設備 33 3.4.1掃描式電子顯微鏡 34 3.4.2 X-ray繞射儀 35 3.4.3恆電位儀-極化曲線量測 35 第四章 結果與討論 37 4.1第一部分:點座標系統 37 4.1.1不同I-下ton-對膜層相含量的影響 38 4.1.2 IR值1.30下不同ton-對膜層生長情形的影響 41 4.1.3 IR值1.10下不同ton-對膜層生長情形的影響 42 4.1.4 IR值0.90下不同ton-對膜層生長情形的影響 43 4.1.5 IR值0.70下不同ton-對膜層生長情形的影響 45 4.1.6電性參數 (IR、CR)對Soft regime發生時間的影響 47 4.1.7 CR值影響Soft regime發生時間的機制 47 4.1.8第一、二象限腐蝕阻抗趨勢 49 4.2第二部分:動態混合鍍膜系統 53 4.2.1動態混合鍍膜對於點460膜厚及腐蝕阻抗的影響 54 4.2.2動態混合鍍膜對於點319、點376膜厚及腐蝕阻抗的影響 57 4.2.3製程的順序對動態混合鍍膜的影響 61 4.3第三部分:時間對動態混合鍍膜系統的影響 63 4.3.1不同後製程時間下動態混合鍍膜 (460+319、460+376)膜層生長情形 63 4.3.2不同後製程時間下動態混合鍍膜 (319+460)膜層生長情形 66 4.3.3不同後製程時間下動態混合鍍膜 (376+460)膜層生長情形 68 4.3.4時間對動態混合鍍膜腐蝕阻抗的影響 69 結論 72 參考文獻 74

[1] Xue, W., Deng, Z., Chen, R., Zhang, T., & Ma, H., Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation, Journal of materials science, 36(11), 2615-2619.
[2] Xijin Li, XingYang Liua, Ben Li Luana, Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes, Applied Surface Science 257 (2011) 9135–9141
[3] C.B. Wei, X.B. Tian, S.Q. Yang, X.B. Wang, Ricky K.Y. Fu, Paul K. Chu, Anode current effects in plasma electrolytic oxidation, Surface & Coatings Technology 201 (2007) 5021–5024
[4] W Gębarowski, S Pietrzyk, Influence of the Cathodic Pulse on the Formation and Morphology of Oxide Coatings on Aluminium Produced by Plasma Electrolytic Oxidation, Archive of Metallurgy and Materials Volume 58 2013
[5] Zhijiang Wanga, Lina Wua, Wei Cai, Shan Ac, Zhaohua Jianga, Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy, Journal of Alloys and Compounds 505 (2010) 188–193
[6] R.O. Hussein, X. Nie, D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma, Electrochimica Acta 112 (2013) 111–119
[7] F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, J. Beauvir, Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process, Surface & Coatings Technology 201 (2007) 8677–8682
[8] J. Martin, P. Leone, A. Nominé, D. Veys-Renaux, G. Henrion, T. Belmonte, Influence of electrolyte ageing on the Plasma Electrolytic Oxidation of aluminium, Surface & Coatings Technology 269 (2015) 36–46
[9] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, M.C. Merino, AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles, Applied Surface Science 254 (2008) 6937–6942
[10]M. Kodu, M. Aints, T. Avarmaa, V. Denks, E. Feldbach, R. Jaaniso, M. Kirm, A. Maaroos, J. Raud, Hydrogen doping of MgO thin films prepared by pulsed laser deposition, Applied Surface Science 257 (2011) 5328–5331
[11] J.Martin, A.Nominé, F.Brochard, J.-L.Briançon, C.Noël, T.Belmonte, T.Czerwiec, G.Henrion, Delay in micro-discharges appearance during PEO of Al Evidence of a mechanism of charge accumulation at the electrolyteoxide interface, Applied Surface Science Volume 410, 15 July 2017, Pages 29-41
[12] J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec, T. Belmonte, Effects of electrical parameters on plasma electrolytic oxidation of aluminium, Surface & Coatings Technology 221 (2013) 70–76
[13] 黃彥彰, 周振嘉,“電漿電解氧化弱工作現象的控制及鎂釔鋅合金的氧化膜層分析”, 國立台灣科技大學機械系, P26, 2018.
[14] V. Ntomprougkidisa, J. Martina, A. Nominéa, G. Henriona, Sequential run of the PEO process with various pulsed bipolar current waveforms, Surface & Coatings Technology 374 (2019) 713–724
[15] Carmen Baudin, Rafael Martinez, and Pilar Pena, High-Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel, Journal of the American Ceramic Society July 1995 Pages 1857-1862
[16] Guillaume Bonnefont, Gilbert Fantozzi, Sandrine Trombert, Lionel Bonneau, Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders, Ceramics International Ceramics International 38 (2012) 131–140
[17] Ibram Ganesh, G. Jaganatha Reddy, G. Sundararajan, Susana M. Olhero, Paula M.C. Torres, Jose´ M.F. Ferreira , Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel, Ceramics International Ceramics International 36 (2010) 473–482
[18] Cemail Aksel1, Brian Rand, Frank L. Riley, Paul D. Warren, Mechanical properties of magnesia-spinel composites, Journal of the European Ceramic Society 22 (2002) 745–754
[19] S. Bhaduri, S.B. Bhaduri, Microstructural and mechanical properties of nanocrystalline spinel and related composites, Ceramics International Ceramics International 28 (2002) 153–158
[20] Pezzato, L., Brunelli, K., Napolitani, E., Magrini, M., & Dabalà, M. , Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities, Applied Surface Science, 357, 1031-1039.
[21] Guo, H. F., & An, M. Z., Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance, Applied Surface Science, 246(1-3), 229-238.
[22] Guo, H., An, M., Xu, S., & Huo, H., Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy, Thin Solid Films, 485(1-2), 53-58.
[23] Cai, Q., Wang, L., Wei, B., & Liu, Q., Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes, Surface and Coatings Technology, 200(12-13), 3727-3733.
[24] Ambat, R., Aung, N. N., & Zhou, W., Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corrosion science, 42(8), 1433-1455.
[25] Guangling Song , Andrej Atrens, Xianliang Wu, and Bo Zhang, Corrosion behavior of AZ21.AZ501 and AZ91 in sodium chloride, Corrosion Science, 40 (1998) pp. 1769 ~ 1791.
[26] Yerokhin, A. L., Leyland, A., & Matthews, A., Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation, Applied surface science, 200(1-4), 172-184.
[27] Hussein, R. O., Nie, X., & Northwood, D. O., A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation, Materials Chemistry and Physics, 134(1), 484-492.
[28] Shrestha, S., Magnesium and surface engineering, Surface Engineering, 26(5), 313-316.
[29] Duan, H., Yan, C., & Wang, F, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochimica Acta, 52(11), 3785-3793.
[30]Wei, D., Zhou, Y., Jia, D., & Wang, Y., Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions, Surface and Coatings Technology, 201(21), 8723-8729.
[31] Cheng, S., Wei, D., & Zhou, Y., Formation and structure of sphene/titania composite coatings on titanium formed by a hybrid technique of microarc oxidation and heat-treatment, Applied Surface Science, 257(8), 3404-3411.
[32] Jin, F., Chu, P. K., Xu, G., Zhao, J., Tang, D., & Tong, H., Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes, Materials Science and Engineering: A, 435, 123-126.
[33] Kai, W. A. N. G., Bon-Heun, K. O. O., Chan-Gyu, L. E. E., Young-Joo, K. I. M., Sung-Hun, L. E. E., & Eungsun, B. Y. O. N., Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation, Transactions of Nonferrous Metals Society of China, 19(4), 866-870.
[34] Melhem, A., Henrion, G., Czerwiec, T., Briançon, J. L., Duchanoy, T., Brochard, F., & Belmonte, T., Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys, Surface and Coatings Technology, 205, S133-S136.
[35] Wang, S., Xia, Y., Liu, L., & Si, N., Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte, Ceramics International, 40(1), 93-99.
[36] Tjiang, F., Ye, L. W., Huang, Y. J., Chou, C. C., & Tsai, D. S., Effect of processing parameters on soft regime behavior of plasma electrolytic oxidation of magnesium, Ceramics International, 43, S567-S572.
[37] Yeh, S. C., Tsai, D. S., Guan, S. Y., & Chou, C. C., Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation, Applied Surface Science, 356, 135-141.
[38] Yerokhin, A. L., Shatrov, A., Samsonov, V., Shashkov, P., Pilkington, A., Leyland, A., & Matthews, A., Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surface and Coatings Technology, 199(2-3), 150-157.
[39] Mordike, B. L., & Ebert, T., Magnesium: properties—applications—potential, Materials Science and Engineering: A, 302(1), 37-45.
[40] Tacikowski, M., Kobus, P., Kamiński, J., Kucharska, B., Kulikowski, K., Marchlewski, P., & Pisarek, M., Structure and properties of composite aluminum oxide layers produced on magnesium alloys using hybrid method, Vacuum, 160, 325-332.
[41] Tsai, D. S., Tsai, Y. C., & Chou, C. C., Corrosion passivation of magnesium alloy with the duplex coatings of plasma electrolytic oxidation and tetrafluoroethylene-based polymers, Surface and Coatings Technology, 366, 15-23.
[42] Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J., Plasma electrolysis for surface engineering, Surface and coatings technology, 122(2-3), 73-93.
[43] Khaselev, O., Weiss, D., & Yahalom, J., Anodizing of pure magnesium in KOH‐aluminate solutions under sparking, Journal of The Electrochemical Society, 146(5), 1757.

無法下載圖示 全文公開日期 2022/08/25 (校內網路)
全文公開日期 2025/08/25 (校外網路)
全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE