簡易檢索 / 詳目顯示

研究生: 廖振廷
Chen-Ting Liao
論文名稱: 複合災害下跨河橋梁之可靠度分析
Reliability Analysis of a Deteriorated River Bridge against Scours and Earthquakes
指導教授: 廖國偉
Kuo-Wei Liao
口試委員: 鍾立來
Lap-Loi Chung
陳瑞華
Rwey-Hua Cherng
鄭敏元
Min-Yuan Cheng
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 111
中文關鍵詞: 橋梁複合災害地震河川沖刷腐蝕劣化易損性聯合破壞機率
外文關鍵詞: bridges, multi-hazard, earthquake, scour, corrosion, fragility, joint failure probability
相關次數: 點閱:335下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇研究考量橋梁結構在生命週期內的材料劣化,並試圖模擬其在地震威脅及河川沖刷等複合災害下的破壞機率。為模擬橋梁結構在劣化狀態下的反應,由劣化程度重新定義材料的應力應變組成律,再以轉換後的塑性鉸性質定義於數值模型之中,並進行非線性動力分析。而橋梁的可靠度由已考慮變異性的外力與需求計算之,探討橋梁結構在特定劣化程度、沖刷深度、地動強度下的易損性。結構生命週期中在河流沖刷事件與地震事件發生下的破壞機率,以矩陣形式建立兩危害類型之聯合發生機率,其中在建立沖刷深度與事件發生機率時,已將沖刷量的不確定性考量其中;而在探討地震強度與事件發生機率關係的過程中,也考量了震源強度衰減的變異性,再取保守計算得之。最後綜合結構易損性與威脅發生機率取得破壞機率,以較為廣義的角度,提供一套評估橋梁生命週期內安全性與可靠度的方法。


This study aims to assess the failure probability under seismic and scour risks considering the degradation of substructure material within its design service period. To simulate the performance of a deteriorated bridge structure, developing the constitutive law of materials behavior for evaluating the hinge properties of piers is needed. Furthermore, the aforementioned data is utilized to construct a bridge model for performing nonlinear time-history analyses. Based on analysis results, structural demand is acquired. The structural capacity can be determined from design guideline. With information of demand and capacity, the fragility of bridge under specific material degradation, scouring depth, and seismic intensity can be evaluated. In addition, the joint occurrence probability of scour and seismic hazards is built as a matrix form, in which the uncertainty of scour depth is taken into account using Monte Carlo simulation (MCS). On the other hand, the variability of intensity attenuation is considered to calibrate the relationship between seismic intensity and occurrence probability. By combining the conditional probability and the occurrence probability of hazard events, a reliability-based method to assess the bridge performance under scour and seismic attacks is established.

摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 1 第三節 研究架構 2 第二章 文獻探討 3 第一節 非均勻橋墩局部沖刷深度預測公式 3 第二節 地震危害度分析 4 第一小節 定值式地震危害度分析 4 第二小節 機率式地震危害度分析 4 第三節 橋梁構件劣化行為 5 第一小節 鋼筋劣化行為 6 第二小節 混凝土劣化行為 9 第三小節 橋梁破壞模式 10 第四節 易損性曲線 10 第三章 研究方法 12 第一節 研究流程 12 第二節 案例模型資訊 14 第一小節 橋梁結構配置 14 第二小節 初始材料性質 17 第三小節 環境參數 18 第三節 橋梁結構非線性行為模擬 19 第一小節 鋼筋 19 第二小節 保護層混凝土 29 第三小節 核心區混凝土 33 第四小節 破壞模式分析 38 第四節 危害度分析 48 第一小節 河流沖刷 48 第二小節 地震威脅 53 第五節 易損性分析 55 第一小節 非線性動力分析 55 第二小節 易損性分析 57 第三小節 複合災害破壞機率分佈 60 第四章 研究結果 61 第一節 易損性分析結果 61 第二節 聯合破壞機率分析結果 64 第五章 結論與建議 69 第一節 研究結論 69 第二節 未來建議 71 參考文獻 73 附錄A 79 附錄B 90

AASHTO. (2014). LRFD Seismic Analysis and Design of Bridges Reference Manual. U.S. Department of Transportation Federal Highway Administration.
[2] AASTHO. (2007). AASHTO Guide Specifications for LRFD Seismic Bridge Design. American Association of State Highway and Transportation Officials.
[3] Achheim, M.; Moehle, J. P. (1992). Shear strength and deformability of reinforced concrete bridge columns Sublected to Inelastic Cyclic Displacements. College of Engineering University of California aat Berkeley.
[4] Alipour, A.; Shafei, B.; Masanobu Shinozuka. (2013, May). Reliability-based Calibration of Load and Resistance Factors for Design of RC Bridges under Multiple Extreme Events: Scour and Earthquake. Journal of Bridge Engineering, pp. 362-371.
[5] ASCE-ACI Joint Task Committee 426. (1973, June). The Shear Strength of Reinforced Concrete Members. Journal of the Structural Division, 99(6), pp. 1091-1187.
[6] Baker, J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA).
[7] Bediako, M. (2009). The Utilization of Some Ghanaian Mineral Admixtures for Masonry Mortar Formulation. Department of Materials Engineering. Kwame Nkrumah University of Science and Technology.
[8] Bediako, M.; Frimpong, A. O. (2013, April). Alternative Binders for Increased Sustainable Construction in Ghana—A Guide for Building Professionals. Materials Sciences and Applications, pp. 20-28.
[9] Bhargava, K.; Ghosh, A. K.; Mori, Yasuhiro; Ramanujam, S. (2008, February). Suggested empirical model for corrosion-induced bond degradation in reinforced concrete. Journal of Structural Engineering, Vol. 134(No. 2), pp. 221-230.
[10] Caltrans. (2010). Seismic Design Criteria version 1.6.
[11] Campbell, K. W. (2008). New Empirical Attenuation Relationship for the Western U.S. and California. U.S. Geological Survey.
[12] Chase, K. J.; Holnbeck, S. R. (2004). Evaluation of Pier-Scour Equations for. Virginia: U.S. Geological Survey.
[13] Choe, Do-Eun; Gardoni, P.; Rosowsky, D.; Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering and System Safety, pp. 383-393.
[14] Comite Euro-International du Beton(CEB). (1993). Model Code 1990. London: Thomas Telford.
[15] Cornell, C. A. (1968, October). Engineering Seismic Risk Analysis. Bulletin of the Seismological Society of America, Vol. 58(No. 5), pp. 1583-1606.
[16] Coronelli, D.; Gambarova, P. (2004, August). Structural Assessment of Corroded Reinforced Concrete Beams: Modeling Guidelines. (1224, Ed.) Journal of Structural Engineering, 130(8), p. 1214.
[17] Delima, A. B. (2011). Seismic Evaluation od Reinforced Concrete Bridges with Corroded Steel Reinforcement using Pushover Analysis. 臺北市: 國立臺灣科技大學.
[18] Der Kiureghian, A; Ang, A. H-S. (1977, August). A Fault-Rupture Model for Seismic Risk Analysis. Bulletin of the Seismological Society of America, Vol. 67(No. 4), pp. 1173-1194.
[19] Gaudio, R.; Grimaldi, C.; Tafarojnoruz, A.; Calomino, F. (2010). Comparison of Formulae for the Prediction of Scour Depth at Piers. In Proceedings of the First European IAHR Congress, (p. 6). Edinburgh, UK.
[20] Gitomarsono, J. (2017). Reliability Analysis of a River Bridge against Scours and Earthquakes. 營建工程系. 臺北市: 國立臺灣科技大學.
[21] HAZUS-MH/MR3. (2007). The Federal Emergency Management Agency’s(FEMA) methodology for estimating potential losses from disasters. Univ. of California, Berkeley, CA.: Pacific Earthquake Engineering Research Center.
[22] Kumar, R. (2007). Effect of Cumulative Seismic Damage and Corrosion on Life-cycle cost of Reinfored concrete bridges. Texas A&M University.
[23] Kumar, R.; Gardoni, P. (2012, January). Modeling Structural Degradation of RC Bridge Columns Subjected to Earthquake and Their Fragility Estimates. Journal of Structural Engineering, 138(1), pp. 42-51.
[24] Lee, H. S.; Cho Y. S. (2009, May). Evaluation of the Mechanical Properties of Steel Reinforcement Embedded in Concrete Specimen as a Function of the Degree of Reinforcement Corrosion. International Journal of Fracture, Vol. 157(Issue 1/2), pp. 81-88.
[25] Liang, X. (2015). Confined Concrete Behavior in Hollow Columns. Iowa State University.
[26] Ma, F. Y. (2012). Corrosive Effects of Chlorides on Metals. In N. Bensalah, Pitting Corrosion (pp. 139-178). InTech.
[27] Mander, J. B.; Priestley, M. J. N.; Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), pp. 1804-1826.
[28] Masanobu Shinozuka; M. Q. Feng; Jongheon Lee; Toshihiko Naganuma. (2000, December). Statistical Analysis of Fragility Curves. Journal of Engineering Mechanics, 126(12), pp. 1224-1231.
[29] Melville, B. W.; Coleman, S. E. (2000). Bridge Scour. Water Resource Publications.
[30] Melville, B. W.; Raudkivi, A. J. (1996, April). Effect of foundation geometry on bridge pier scour. Journal of Hydraulic Engineering, 122(4), pp. 203-209.
[31] Milne, W. G.;Davenport, A. G. (1969, April). Distribution of earthquake risk in Canada. Bulletin of the Seismological Society of America, Vol. 59(No. 2), pp. 729-754.
[32] Molina, F. J.; Alonsoc, C.; Andrade, C. (1993). Cover Concrete as a Function of Rebar Corrosion II: Numerical Mode. Material Structure, 26, pp. 532-548.
[33] Nielson, B. G. (2005). Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones. Georgia Institute of Technology, School of Civil and Environmental Engineering.
[34] Ou, Y-C.; Chiewanichakorn, M.; Aref, A. J.; Lee, G. (2007). Cyclic behavior of precast segmental concrete bridge column with high performance or conventional steel reinforcing bars as energy dissipation bars. Earthquake Engineering and Structural Dynamic.
[35] Paulay, T.; Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. Canada: John Wiley & Sons, Inc.
[36] Porter, K. (2017). A Beginners Guide to Fragility, Vulnerability, and Risk. University of Colorado Boulder.
[37] Priestley, M. J. N.; Seible, F.; Calvi, G. M. (1996). Seismic Design and Retrofit of Bridges. Canada: John Wiley & Sons, Inc.
[38] Priestley, M. J. N.; Verma, R.; Xiao, Y. (1994). Seismic Shear Strength of Reinforced Concrete Columns. Journal of Structural Engineering, 120(8), pp. 2310-2329.
[39] Ririt Aprilin S. (2010). 考慮鋼筋腐蝕RC建築物之耐震生命週期性能評估. 營建工程系. 臺北市: 國立臺灣科技大學.
[40] Schwartz, D. P.; Coppersmith, K. J. (1984, July 10). Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research, Vol. 89(No. B7), pp. 5681-5698.
[41] Sung, Y. C.; Liu, K. Y.; Su, C.K.; Tsai, I. C.; Chang, K. C. (2005). A study on pushover analyses of reinforced. Structural Engineering and Mechanics, Vol. 21(No. 1), pp. 35-52.
[42] Tuutti, K. (1982). Corrosion of Steel in Concrete. Stockholm: Swedish Cement and Concrete Research Institute.
[43] U.S. Department of Transportation Federal Highway Administration. (2012). Evaluating Scour at Bridges(Fifth Edition). U.S. Department.
[44] Youngs, R. R.; Coppersmith, K. L. (1985, August). Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates. Bulletin of the Seismological Society of America, Vol. 75(No. 4), pp. 930-964.
[45] 內政部營建署. (2002). 結構混凝土施工規範.
[46] 內政部營建署. (2011). 建築物耐震設計規範及解說.
[47] 日本土木学会JSCE. (2008). コソクリート構造物の信賴性設計法に関する研究小委員会(336委員会)成果報告書第三篇 耐久性信賴評價.
[48] 王傳益;張嘉玲;余嘉婷;鄭人豪. (2011年6月). 非均勻圓柱型橋墩於非均勻床砂下之局部沖刷. 臺灣水利, 第59卷(第2期), 頁 63-74.
[49] 交通部. (2009). 公路橋梁耐震設計規範.
[50] 交通部臺灣區國道高速公路局. (2009). 國道高速公路(通車路段)橋梁耐震補強工程-第二期工程可行性研究報告書. 交通部.
[51] 何明錦;邱建國;歐昱辰;蔡煒銘;何家維;蔡立倫. (2009). 鋼筋腐蝕對於鋼筋混凝土建築構件耐震性能與生命週期之影響. 臺北市: 內政部建築研究所.
[52] 吳美惠. (2010年4月). 老劣化RC結構檢測、評估與防蝕技術. 中工高雄會刊, 頁 8-18.
[53] 李錫堤. (1993年12月). 活斷層工程評估的新發展. 地工技術雜誌(第44期), 05-18.
[54] 林哲宇. (2016). 複雜基礎之橋墩局部沖刷深度與預測公式之探討. 營建工程系. 臺北市: 國立臺灣科技大學.
[55] 涂豐鈞. (2012). 考慮劣化與震損影響之RC校舍耐震能力評估研究. 營建工程系. 臺北市: 國立臺灣科技大學.
[56] 張國鎮;蔡益超;張荻薇;宋裕祺;廖文義;柴駿甫;洪曉慧;劉光晏;吳弘明;戚樹人;陳彥豪. (2009). 公路橋梁耐震能力評估及補強準則之研究. 臺北市: 國家地震工程研究中心.
[57] 張權;薛強. (2011年7月). 公路橋梁耐震評估靜力側推分析案例探討. 中興工程季刊(112), 頁 15-22.
[58] 陳雯惠. (2012). 新一代房屋結構耐震性能評估所需之地表加速度歷時紀錄縮放法研究. 營建工程系. 臺北市: 國立臺灣科技大學.
[59] 鳥取誠一;宮川豊章. (2004年8月). 中性化の影響を受ける場合の鉄筋腐食に関する劣化予測. 土木学会論文集, V-64(No. 767), 頁 35-46.
[60] 經濟部水利署. (2015). 中華民國一零四年臺灣水文年報第二部分-河川水位及流量. 經濟部水利署.
[61] 經濟部水利署水利規劃試驗所. (2008). 清水溪治理規劃檢討(2/2). 經濟部水利署.
[62] 葉錦勳. (2003). 台灣地震損失評估系統─TELES. 臺北市: 國家地震工程研究中心.
[63] 葉錦勳. (2006). 地震危害度分析與震災境況模擬技術整合研究(I). 臺北市: 國家地震工程研究中心.
[64] 葉錦勳;簡文郁. (2007). 地震危害度分析與震災境況模擬技術整合研究(II). 臺北市: 國家地震工程研究中心.
[65] 鄭明源;宋裕祺;黃炳勳;陳炳宏;蘇進國. (2010). 含沉箱基礎液化分析之橋梁耐震能力評估. 第十屆中華民國結構工程研討會 (頁 1-10). 台灣世曦工程顧問股份有限公司.
[66] 鄭錦桐. (2002). 台灣地區地震危害度的不確定性分析與參數拆解. 博士論文, 國立中央大學, 地球物理研究所.
[67] 鄭錦桐;林柏伸;江憲宗;李錫堤. (2011). 台灣的地震危害度分析. 海峽兩岸地質災害研討會, (頁 57-73).
[68] 簡文郁;張毓文. (2005). 與危害度相符之境況模擬地震及其在震災評估之應用. 臺北市: 國家地震工程研究中心.
[69] 羅俊雄;黃詠瑞. (2002). 台灣地區地震危害度分析─考慮特徵地震模式. 臺北市: 國家地震工程研究中心.

QR CODE