簡易檢索 / 詳目顯示

研究生: 許錦鴻
Chin-Hong Khow
論文名稱: 繞射非球面多焦點疏水性人工水晶體之製造與模擬分析
Manufacturing and Simulation Analysis of Diffractive Aspheric Multifocal Hydrophobic Intraocular Lens
指導教授: 顏家鈺
Jia-Yush Yen
口試委員: 鄭逸琳
Yih-Lin Cheng
戴子安
Chi-An Dai
王一中
I-Jong Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 124
中文關鍵詞: 白內障有限元素法多焦點人工水晶體單點鑽石切削
外文關鍵詞: Cataract, Finite Element Method, Multifocal, Intraocular Lens, Single-Point Diamond Turning
相關次數: 點閱:271下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人眼中的自然水晶體為透明且可讓光線自由通過的結構,然而隨著年齡增長、眼睛因外力受傷、遺傳性、眼睛病變、高度近視等因素,對水晶體的功能及構造造成不可逆的影響,進而導致水晶體混濁而最終形成白內障。白內障最常見的治療方式為進行超音波晶體乳化術,將變質的水晶體置換成人工水晶體,讓患者恢復一定的視力。本論文旨在透過設計生物相容性相符的疏水性類壓克力材料,P4H30S製成之多焦點折射/繞射型非球面人工水晶體,並依據其幾何結構繪製出相對應的模具,藉由臺大之單點鑽石切削設備來製作,其中刀具旋轉角度及刀尖半徑會成為加工路徑規劃上的一些拘束及限制,故需在加工前做好預先分析,為避免撞機發生的可能及選出最合適的刀具進行精密加工,以利取得鏡面結構。接著,將調配好的疏水性類壓克力材料灌注到模具裡,再把模具放置到烤箱對材料進行加熱固化,與此同時,建立出以真實環境為基礎的數位模型。此模型涵蓋了使用有限元素法(FEM)建立之人工水晶體與應用計算流體力學(CFD)於空氣、液體材料三種物理模型,並分析多相流在模具裡的流動影響,以不同傾斜角度灌注液體材料到模具之中,觀察氣泡產生的多寡。接續透過給定的溫度變化曲線來取得模擬人工水晶體熱固化的結果,其液體材料內部之熱傳及固化過程中所產生的翹曲變形及應力分布皆將予以重點考慮在所建立之模型。本文中針對所設計的人工水晶體進行建模與模擬,並引入真實液體材料在所開發的模具中灌注成型和熱固化的結果,進行比較和驗證。透過流體和結構分析結果顯示,該模型可反映出與真實人工水晶體製程相似的氣泡產生和變形破壞之趨勢。


    The natural crystalline lens in the human eye is a transparent structure that allows light to pass through freely. However, factors such as aging, eye injuries, genetic factors, eye diseases, and high myopia can irreversibly affect the function and structure of the lens, leading to its clouding and the formation of cataracts. The most common treatment for cataracts is phacoemulsification, which is one of the cataract surgeries that supersedes the deteriorated lens with an Intraocular Lens (IOL) to restore vision.This study aims to design a hybrid refractive-diffractive IOL with a hydrophobic, biocompatible material, P4H30S. The corresponding molds are created based on the proposed geometric structure and manufactured using a Single-Point Diamond Turning (SPDT) machine. The rotational angle and nose radius of the cutting tool impose constraints and limitations on the cutting path, necessitating pre-analysis to avoid potential collisions or tool interference and choose the most appropriate tool for ultra-precision machining to achieve a nanoscale-precision structure. Next, the blended material is injected into the molds and cured by heating in an oven. Meanwhile, a numerical model based on the real environment is established.This model encompasses the IOL created using the Finite Element Method (FEM) and applies Computational Fluid Dynamics (CFD) to analyze the flow of multiphase fluids inside the molds, particularly observing the generation of air bubbles during the injection of materials at different tilt angles. The simulation results of the heat curing process of the IOLs, including internal heat transfer, resulting deformation, and stress distribution, are also investigated based on given temperature variation curves.The modeling and simulation of the IOL in this study is compared and validated by introducing liquid materials into the fabricated molds for the injection and curing processes. The fluid and structural analyses results demonstrate that the model reflects similar trends in air bubbles formation and deformation or even material failure to those observed in the actual manufacturing process of IOL.

    中文摘要 i Abstract ii 誌謝 iv Contents vi List of Figures x List of Tables xiv Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Motivation and Objectives 4 1.3 Literature Review 5 1.4 Thesis Structure 8 Chapter 2 Introduction to Human Eye, Cataract and Intraocular Lens (IOL) 11 2.1 Light 11 2.2 Wave or Particle 12 2.3 Quantum Electrodynamics 15 2.3.1 Refraction of Light 15 2.3.2 Refractive Index 16 2.3.3 Diffraction of Light 17 2.4 Basic Optics of the Eye 18 2.4.1 Geometric Optics 18 2.4.2 Optical Structure and Image Formation 19 2.4.3 Cardinal Points 22 2.4.4 Equivalent Power and Focal Lengths 23 2.4.5 Vergence Equation and Thick Lens Equation 25 2.5 Cataract 28 2.6 Overview of Cataract Surgery and IOL 31 2.6.1 Types of Cataract Surgery 31 2.6.2 Types of IOL 32 2.6.2.1 Aspheric IOLs 32 2.6.2.2 Toric IOLs 34 2.6.2.3 Multifocal IOLs 34 2.6.2.4 Accommodating IOLs 35 2.6.2.5 Extended Depth of Focus (EDOF IOLs) 35 2.6.3 Calculation of IOL Power for Implantation 36 Chapter 3 Manufacturing of the IOL Molds 37 3.1 Single Point Diamond Turning (SPDT) Machining 37 3.2 Geometry of IOL 37 3.2.1 Posterior Profile of IOL 39 3.2.2 Anterior profile of IOL 44 3.3 Theoretical Calculation 47 3.4 Optical Simulation 54 3.4.1 Spherical Surface 54 3.4.2 Diffractive Structure 54 3.4.3 Spherical Surface and Diffractive Structure 56 3.4.4 Aspheric Surface 57 3.4.5 Final IOL 58 3.5 Pre-analysis of the SPDT machining 59 3.5.1 Rotational Angle of Cutting Tool 59 3.5.2 Nose Radius of Cutting Tool 62 3.5.3 Specifications of the Diamond Cutting Tool 63 3.6 Design of IOL Molds 64 3.6.1 Upper Mold 65 3.6.2 Lower Mold 66 3.7 Fabrication of the Molds 68 Chapter 4 Establishment of Numerical Model 71 4.1 Simulation Workflow 71 4.2 Fluent Model 72 4.3 Mechanical Model 75 Chapter 5 Results and Discussions 79 5.1 Generation of Air Bubbles via Injection Molding 79 5.2 Heat Curing of IOL 83 5.2.1 Simulation Results 85 5.2.2 Experimental Results 96 Chapter 6 Conclusion and Future Work 100 6.1 Conclusion 100 6.2 Future Work 101 Reference 103

    [1] R. Michael, L. Pareja-Aricò, F. G. Rauscher, and R. I. Barraquer, "Cortical Cataract and Refractive Error," (in eng), Ophthalmic Res, vol. 62, no. 3, pp. 157-165, 2019, doi: 10.1159/000496865.
    [2] E. J. Linebarger, D. R. Hardten, G. K. Shah, and R. L. Lindstrom, "Phacoemulsification and Modern Cataract Surgery," Survey of Ophthalmology, vol. 44, no. 2, pp. 123-147, 1999/09/01/ 1999, doi: https://doi.org/10.1016/S0039-6257(99)00085-5.
    [3] L. Zeng and F. Fang, "Advances and challenges of intraocular lens design [Invited]," (in eng), Appl Opt, vol. 57, no. 25, pp. 7363-7376, Sep 1 2018, doi: 10.1364/ao.57.007363.
    [4] L. Werner, "Intraocular Lenses: Overview of Designs, Materials, and Pathophysiologic Features," (in eng), Ophthalmology, vol. 128, no. 11, pp. e74-e93, Nov 2021, doi: 10.1016/j.ophtha.2020.06.055.
    [5] R. Sieburth and M. Chen, "Intraocular lens correction of presbyopia," Taiwan Journal of Ophthalmology, vol. 9, 01/01 2019, doi: 10.4103/tjo.tjo_136_18.
    [6] N. Yu, F. Fang, B. Wu, L. Zeng, and Y. Cheng, "State of the art of intraocular lens manufacturing," The International Journal of Advanced Manufacturing Technology, vol. 98, no. 5, pp. 1103-1130, 2018/09/01 2018, doi: 10.1007/s00170-018-2274-5.
    [7] J. Xie, "Design, Fabrication and Testing of Diffractive Multifocal Intraocular Lens (MIOL)," 2018.
    [8] Hanita Lenses. "Intensity-Hanita lenses." https://www.hanitalenses.com/intraocular-implants/multifocal/intensity/ (accessed.
    [9] VSY Biotechnology. "Acriva Trinova product brochure." https://www.vsybiotechnology.com/detail/ophthalmology/healtcare-professionals/our-products/our-inspiring-portfolio/trifocal-iol-s/acriva-trinova (accessed.
    [10] A.-F. Alfredo, C.-G. Alfredo, C.-G. David, M.-S. Paula, and A. Alfredo, "Comparative study of visual results obtained with two Trifocal lens models in cataract surgery," Journal of Clinical Research and Ophthalmology, pp. 054-060, 07/16 2020, doi: 10.17352/2455-1414.000074.
    [11] F. Vega, M. Valentino, F. Rigato, and M. S. Millán, "Optical design and performance of a trifocal sinusoidal diffractive intraocular lens," (in eng), Biomed Opt Express, vol. 12, no. 6, pp. 3338-3351, Jun 1 2021, doi: 10.1364/boe.421942.
    [12] M. Tetz and M. R. Jorgensen, "New hydrophobic IOL materials and understanding the science of glistenings," Current eye research, vol. 40, no. 10, pp. 969-981, 2015.
    [13] J. H. Roffman, D. F. Ross, and M. Guillon, "Multifocal ophthalmic lenses and processes for their production," ed: Google Patents, 2003.
    [14] I. Iskakov, "Processes for manufacturing multifocal diffractive-refractive intraocular lenses," Optoelectronics, Instrumentation and Data Processing, vol. 53, pp. 442-449, 2017.
    [15] C. Huygens, Traité de la Lumière ([English translation by S. P. Thompson, Treatise on Light (Macmillan, London, 1912)].).
    [16] I. Newton, Opticks, or, a treatise of the reflections, refractions, inflections & colours of light. Courier Corporation, 1952.
    [17] T. Young, "I. The Bakerian Lecture. Experiments and calculations relative to physical optics," Philosophical transactions of the Royal Society of London, no. 94, pp. 1-16, 1804.
    [18] J. C. Maxwell, "VIII. A dynamical theory of the electromagnetic field," Philosophical transactions of the Royal Society of London, no. 155, pp. 459-512, 1865.
    [19] T. L. Dimitrova and A. Weis, "The wave-particle duality of light: A demonstration experiment," American Journal of Physics, vol. 76, no. 2, pp. 137-142, 2008.
    [20] A. Einstein, "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt," ed: Albert Einstein-Gesellschaft, 1905.
    [21] D. Ter Haar, The Old Quantum Theory: The Commonwealth and International Library: Selected Readings in Physics. Elsevier, 2016.
    [22] R. P. Feynman, QED: The strange theory of light and matter. Princeton University Press, 2006.
    [23] D. Atchison, Optics of the Human Eye (2nd ed.). CRC Press, 2023.
    [24] J. Morgan and R. Hanau, "Introduction to geometrical and physical optics," American Journal of Physics, vol. 21, no. 9, pp. 696-696, 1953.
    [25] D. Allen and A. Vasavada, "Cataract and surgery for cataract," (in eng), Bmj, vol. 333, no. 7559, pp. 128-32, Jul 15 2006, doi: 10.1136/bmj.333.7559.128.
    [26] J. C. Bobrow et al., Lens and cataract. American Academy of Ophthalmology, 2008.
    [27] B. Gurnani and K. Kaur, "Phacoemulsification," in StatPearls [Internet]: StatPearls Publishing, 2022.
    [28] E. Berrio, J. Tabernero, and P. Artal, "Optical aberrations and alignment of the eye with age," Journal of Vision, vol. 10, no. 14, pp. 34-34, 2010, doi: 10.1167/10.14.34.
    [29] A. C. Kingston and I. G. Cox, "Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality," (in eng), Clin Ophthalmol, vol. 7, pp. 933-8, 2013, doi: 10.2147/opth.S44056.
    [30] G. H. Beiko, W. Haigis, and A. Steinmueller, "Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values," (in eng), J Cataract Refract Surg, vol. 33, no. 5, pp. 848-58, May 2007, doi: 10.1016/j.jcrs.2007.01.035.
    [31] K. Yang, J. Li, W. Zhang, Z. Liu, C. Song, and Y. Zhao, "Implanting toric implantable collamer lens displays better astigmatism correction than implantable collamer lens combined with manually limbal relaxing incision," BMC Ophthalmology, vol. 23, no. 1, p. 198, 2023/05/05 2023, doi: 10.1186/s12886-023-02941-1.
    [32] N. J. Bauer, N. E. de Vries, C. A. Webers, F. Hendrikse, and R. M. Nuijts, "Astigmatism management in cataract surgery with the AcrySof toric intraocular lens," (in eng), J Cataract Refract Surg, vol. 34, no. 9, pp. 1483-8, Sep 2008, doi: 10.1016/j.jcrs.2008.05.031.
    [33] C. Novis, "Astigmatism and toric intraocular lenses," (in eng), Curr Opin Ophthalmol, vol. 11, no. 1, pp. 47-50, Feb 2000, doi: 10.1097/00055735-200002000-00007.
    [34] D. F. Chang, "Comparative rotational stability of single-piece open-loop acrylic and plate-haptic silicone toric intraocular lenses," (in eng), J Cataract Refract Surg, vol. 34, no. 11, pp. 1842-7, Nov 2008, doi: 10.1016/j.jcrs.2008.07.012.
    [35] P. Kanclerz, F. Toto, A. Grzybowski, and J. L. Alio, "Extended Depth-of-Field Intraocular Lenses: An Update," (in eng), Asia Pac J Ophthalmol (Phila), vol. 9, no. 3, pp. 194-202, May-Jun 2020, doi: 10.1097/apo.0000000000000296.
    [36] K. G. Gundersen and R. Potvin, "The Effect of Spectacle-Induced Low Myopia in the Non-Dominant Eye on the Binocular Defocus Curve with a Non-Diffractive Extended Vision Intraocular Lens," (in eng), Clin Ophthalmol, vol. 15, pp. 3541-3547, 2021, doi: 10.2147/opth.S329922.
    [37] Y.-C. Liu, M. Wilkins, T. Kim, B. Malyugin, and J. S. Mehta, "Cataracts," The Lancet, vol. 390, no. 10094, pp. 600-612, 2017/08/05/ 2017, doi: https://doi.org/10.1016/S0140-6736(17)30544-5.
    [38] S. E. Brodie et al., 2021-2022 Basic and Clinical Science Course, Section 03: Clinical Optics. American Academy of Ophthalmology, 2021.
    [39] S. Hatefi and K. Abou-El-Hossein, "Review of single-point diamond turning process in terms of ultra-precision optical surface roughness," The International Journal of Advanced Manufacturing Technology, vol. 106, 01/01 2020, doi: 10.1007/s00170-019-04700-3.
    [40] G. Monaco, M. Gari, F. Di Censo, A. Poscia, G. Ruggi, and A. Scialdone, "Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: trifocal versus extended range of vision," Journal of Cataract & Refractive Surgery, vol. 43, no. 6, pp. 737-747, 2017.
    [41] B. Cochener, G. Boutillier, M. Lamard, and C. Auberger-Zagnoli, "A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses," Journal of Refractive Surgery, vol. 34, no. 8, pp. 507-514, 2018.
    [42] J. Loicq, N. Willet, and D. Gatinel, "Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses," (in eng), J Cataract Refract Surg, vol. 45, no. 11, pp. 1650-1659, Nov 2019, doi: 10.1016/j.jcrs.2019.06.002.
    [43] A. L. Cohen, "Diffractive bifocal lens designs," Optometry and Vision Science: Official Publication of the American Academy of Optometry, vol. 70, no. 6, pp. 461-468, 1993.
    [44] P. J. Valle, J. E. Oti, V. F. Canales, and M. P. Cagigal, "Visual axial PSF of diffractive trifocal lenses," Optics express, vol. 13, no. 7, pp. 2782-2792, 2005.
    [45] F. Gori et al., "Analytical derivation of the optimum triplicator," Optics Communications, vol. 157, no. 1, pp. 13-16, 1998/12/01/ 1998, doi: https://doi.org/10.1016/S0030-4018(98)00518-5.
    [46] M. Almeida and L. Carvalho, "Different Schematic Eyes and their Accuracy to the in vivo Eye: A Quantitative Comparison Study," Brazilian Journal of Physics - BRAZ J PHYS, vol. 37, 06/01 2007, doi: 10.1590/S0103-97332007000300008.
    [47] H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A, vol. 14, no. 8, pp. 1684-1695, 1997/08/01 1997, doi: 10.1364/JOSAA.14.001684.
    [48] R. R. Sudhir, A. Dey, S. Bhattacharrya, and A. Bahulayan, "AcrySof IQ PanOptix Intraocular Lens Versus Extended Depth of Focus Intraocular Lens and Trifocal Intraocular Lens: A Clinical Overview," (in eng), Asia Pac J Ophthalmol (Phila), vol. 8, no. 4, pp. 335-349, Jul-Aug 2019, doi: 10.1097/apo.0000000000000253.
    [49] 梁智軒, "以疏水/親水共聚高分子開發可摺疊式人工水晶體及其配方/性質關聯研究," 2022.
    [50] A. I. H. Committee, "Metals Handbook Vol 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials," ASM Int, vol. 3, no. 5, 1990.
    [51] S. P. Marsh, LASL shock Hugoniot data. Univ of California Press, 1980.
    [52] P. D. Sheet, "Perkadox AIBN."

    QR CODE