簡易檢索 / 詳目顯示

研究生: 李宇軒
Yu-Xuan Li
論文名稱: 小應變彈塑性模式於深開挖分析之研究
Application of small strain elastic-plastic model in the analysis of deep excavation
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pio-Go Hsieh
鄧福宸
Fu-Chen Teng
蔡淵堯
Yuan-Yao Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 221
中文關鍵詞: PLAXISSoil testHS modelHSS model小應變深開挖
外文關鍵詞: PLAXIS, Soil test, HS model, HSS model, Small strain, Deep excavation
相關次數: 點閱:229下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去多以經驗公式計算土壤楊氏模數,其中經驗公式皆由土壤基本性質參數組成。然而,土壤基本性質參數係由現地鑽探取樣後,經由室內試驗所得到之參數。但土壤於鑽探取樣時,常受到擾動地影響,導致試驗結果準確度降低,因此必須收集許多鑽孔資料進行判斷。本研究使用PLAXIS中之Soil test進行土壤參數的優化,再與經驗公式計算的土壤楊氏模數比較,以便於日後快速地求取土壤楊氏模數。再者,本研究考慮土壤小應變行為,使用了PLAXIS中之HSS model。由於HSS model須額外輸入小應變參數,如初始剪力模數(G0^ref)及初始剪力模數衰退至70%時所對應之剪應變(γ0.7)。首先,針對HSS model進行一系列的參數研究。最後,對G0^ref和γ0.7做出合理的假設,並提出預測深開挖變形的方法。結果透過五個座落於軟弱黏土中之深開挖案例得到驗證。


In the past, empirical formulas were commonly used to calculate the soil stiffness parameters, which are based on the basic soil properties. However, the parameters of basic soil properties obtained by the laboratory tests after sampling may not be able to represent actual conditions because soil samples from boring are often disturbed. In this study, Soil test in PLAXIS was performed to optimize the soil parameters and then compares them with the soil stiffness parameters calculated by empirical formulae, which could obtain the soil stiffness parameters more quickly and accurately. Furthermore, the hardening soil small-strain (HSS) model in PLAXIS was adopted for the deep excavation analysis, which could consider a small-strain behavior of soil. Compared with the HS model, the HSS model requires additional two parameters, such as initial shear modulus (G0^ref) and the shear strain level at which the shear modulus is reduced to about 70% of initial shear modulus (γ0.7). A series of parametric studies were initially conducted to study the characteristics of the HSS model. Finally, a reasonable estimation of the G0^ref and γ0.7 was proposed to predict the deformation in deep excavations. The results were validated by five excavation case histories in soft clay.

摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號索引 XVI 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 2 1.3 論文架構 2 第2章 文獻回顧 4 2.1 前言 4 2.2深開挖工程施工方法 4 2.2.1 順打工法(Bottom-up method) 4 2.2.2 逆打工法(Top-down method) 5 2.3 小應變之行為特性 7 2.3.1 小應變之區域範圍 7 2.3.2 台北粉質黏土小應變勁度 8 2.4 土壤分析模式 11 2.4.1 土壤勁度 11 2.4.2 分析模式類型 19 2.4.3 土壤與結構介面元素 20 第3章 材料參數之決定 22 3.1 前言 22 3.2 結構參數之決定 22 3.2.1 版元素(Plate element) 22 3.2.2 樑與錨定元素(Beam and anchor element) 23 3.3 土壤楊氏模數之決定 24 3.3.1 經驗公式 24 3.3.1.1 砂土質土壤楊氏模數 24 3.3.1.2 黏土質土壤楊氏模數 25 3.3.2 土壤單元試驗 26 3.4 土壤楊氏模數來源差異比較 32 3.4.1 開挖案例概況 32 3.4.2 土壤基本性質 35 3.4.3 分析之結構及土壤參數 41 3.4.3.1 分析之結構參數 41 3.4.3.1 分析之土壤參數 45 3.4.4 分析施工順序 49 3.4.5 分析之模型邊界 49 3.4.6 分析之結果討論 50 3.5 小結 54 第4章 數值模擬分析-小應變參數研究與應用 55 4.1 前言 55 4.2 HSS model參數研究 55 4.3 實際案例應用 74 4.3.1 Case1:台北國家企業中心(TNEC) 74 4.3.1.1 開挖案例概述 74 4.3.1.2 土壤基本性質 75 4.3.1.3 分析之結構及土壤參數 81 4.3.1.4 分析施工順序 82 4.3.1.5 分析之模型邊界 86 4.3.1.6 分析之結果討論 87 4.3.2 Case2:大台北瓦斯公司(Taipei gas) 104 4.3.2.1 開挖案例概述 104 4.3.2.2 土壤基本性質 106 4.3.2.3 分析之結構及土壤參數 107 4.3.2.4 分析施工順序 108 4.3.2.5 分析之模型邊界 112 4.3.2.6 分析之結果討論 112 4.3.3 Case3:舊金山開挖案例(San Francisco case) 129 4.3.3.1 開挖案例概述 129 4.3.3.2 土壤基本性質 131 4.3.3.3 分析之結構及土壤參數 134 4.3.3.4 分析施工順序 137 4.3.3.5 分析之模型邊界 137 4.3.3.6 分析之結果討論 138 4.3.4 Case4:統一國際大樓(UPIB) 141 4.3.4.1 開挖案例概述 141 4.3.4.2 土壤基本性質 143 4.3.4.3 分析之結構及土壤參數 144 4.3.4.4 分析施工順序 149 4.3.4.5 分析之模型邊界 151 4.3.4.6 分析之結果討論 151 4.3.5 Case5:文林苑 169 4.3.5.1 分析之土壤參數 169 4.3.5.2 分析之結果討論 174 4.4 小結 192 第5章 結論與建議 196 5.1 結論 196 5.2 建議 197 參考文獻 198

Atkinson, J., &Sallfors, G. (1991). Experimental determination of stress–strain–time characteristics in laboratory and in situ tests. Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, pp.915-956.
ACI Committee 318. (1995). Building code requirements for structural concrete (ACI318-95) and commentary (ACI 318R-95).
Benz, T. (2007). Small-Strain Stiffness of Soils and its Numerical Consequences. In University of Stuttgart.
Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Fonseca, F., Monoj, N. R., Zampich, L., &Zalamea, N. (2021). PLAXIS Material Models Manual. 274.
Chang-Yu Ou, Jui-Tang Liao, H.-D. L. (1998). Performance of diaphragm wall constuucted using top-down method. ASCE, 124(September), 798–808.
Calvello, M., &Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. In Computers and Geotechnics (Vol. 31, Issue 5, pp. 410–424). https://doi.org/10.1016/j.compgeo.2004.03.004
Fu-Chen, T. (2010). Prediction of ground movement induced by excavation using the numerical method with the consideration of inherent stiffness anisotropy. National Taiwan University of Science and Technology.
FUGRO(2018). Geotechnical report pilot geotechnical site investigation seawall earthquake safety program San Francisco, FUGRO corporation report, California (Vol. 002, Issue 04).
Gibbs, J. F., Fumal, T. E., Borcherdt, R. D., Warrick, R. E., Liu, H., &Westerlund, R. E. (1994). Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California.
Hardin, B. O., &Black, W. L. (1969). Vibration Modulus of Normally Consolidated Clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353–369. https://doi.org/10.1061/jsfeaq.0001100
Hsieh, P. G., &Ou, C. Y. (2018). Mechanism of buttress walls in restraining the wall deflection caused by deep excavation. Tunnelling and Underground Space Technology, 82(June), 542–553. https://doi.org/10.1016/j.tust.2018.09.004
Jaky,J. (1944). The coefficient of earth pressure at rest. Journal of the Society of Hungarian Architects and Engineering, Vol.78, No.22, pp.355-358.
Kulhawy, F. H., &Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. In Ostigov. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6653074
Kung, G. T., Juang, C. H., Hsiao, E. C., &Hashash, Y. M. (2007). Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 731–747. https://doi.org/10.1061/(asce)1090-0241(2007)133:6(731)
Khoiri, M., &Ou, C. Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. In Computers and Geotechnics (Vol. 47, pp. 57-67). Computers and Geotechnics. https://doi.org/10.1016/j.compgeo.2012.06.009
Lim, A., Ou, C.-Y., &Hsieh, P.-G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. 5(1), 1–12. papers3://publication/uuid/24CA8CC8-408F-4F71-BDAD-E2B1044D51FC
Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., &Balasubramaniam, A. (2013). Small strain stiffness and stiffness degradation curve of Bangkok Clays. Soils and Foundations, 53(4), 498–509. https://doi.org/10.1016/j.sandf.2013.06.003
Lim, A. (2018). Investigation of integrated buttress and cross walls to control movements induced by excavation. PhD thesis. National Taiwan University of Science and Technology.
Mana, A. I. (1980). Finite element analyses of deep excavation behavior in soft clay. PhD thesis. Stanford university.
Ou, C. Y., &Shiau, B. Y. (1998). Analysis of the corner effect on excavation behaviors. Canadian Geotechnical Journal, 35(3), 532–540. https://doi.org/10.1139/t98-013
Ou, C. Y., Lin, Y. L., &Hsieh, P. G. (2006). Case record of an excavation with cross walls and buttress walls. Journal of GeoEngineering, 1(2), 79–87. https://doi.org/10.6310/jog.2006.1(2).4
Ou, C.-Y. (2006). Deep Excavation : Theory and Practice. Taylor & Francis.
Ou, C.-Y., Hsieh, P.-G., &Lin, Y.-L. (2011). Performance of excavations with cross walls. Journal of Geotechnical and Geoenvironmental Engineering, 137(1), 94–104. https://doi.org/10.1061/(asce)gt.1943-5606.0000402
Parks, M. C. (2019). Engineering Properties and Geologic Setting of Old Bay Clay Deposits, Downtown San Francisco, California. University of California, Berkeley.
Schanz, T., &Vermeer, P. A. (1998). Pre-failure deformation behaviour of geomaterials : On the stiffness of sands.
Schanz, T., Vermeer, P. A., &Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics. Ten Years of PLAXIS International. Proceedings of the international symposium, Amsterdam, March 1999. (pp. 281-296).https://doi.org/10.1201/9781315138206-27
Santos, J. A.Dos, &Correia, A. G. (2001). Reference threshold shear strain of soil. Its application to obtain an unique strain-dependent shear modulus curve for soil. In Proceedings 15th InternationalConference on Soil Mechanics and Geotechnical Engineering(Istanbul).
Teng, F.-C., Ou, C.-Y., &Hsieh, P.-G. (2014). Measurements and Numerical Simulations of Inherent Stiffness Anisotropy in Soft Taipei Clay. Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 237–250. https://doi.org/10.1061/(asce)gt.1943-5606.0001010
Terrani, K. A. (2016). Engineering Properties and Geologic Setting of Old Bay Clay Deposits, Downtown San Francisco, California. DNA Mediated Assembly of Protein Heterodimers on Membrane Surfaces, 67. https://escholarship.org/uc/item/98384265
台灣世曦工程顧問股份有限公司(2020),臺北都會區大眾捷運系統環狀線北環段委託技術服務DF117設計標-補充地質調查成果報告。
吳國翔(2020),汐止區深開挖之案例研究,碩士學位論文,國立台灣科技大學。
林亦郎(2010),地中壁對黏土層開挖變形影響之研究,博士學位論文,國立台灣科技大學。
莫若楫(2001),台北市捷運工程之回顧,亞新工程顧問股份有限公司。
富國技術工程股份有限公司(2009),台北市士林區陽明段一小段771-2等地號基地土壤地質調查及大地工程分析報告書(Vol. 070806)。
曾迪揚(2012),有效應力不排水深開挖分析之勁度探討,碩士學位論文,國立台灣科技大學。
富國技術工程股份有限公司(2015),樂揚文林苑新建工程安全觀測系統總報告(Vol. 090708)。
富國技術工程股份有限公司(2020),捷運士林站 TOD轉乘設施空間活化及多元服務建置統包工程基地土壤調查分析報告書。
鄧福宸(2005),異向性小應變三軸試驗儀之研發,碩士學位論文,國立台灣科技大學。
鄧文賓(2013),扶壁對深開挖壁體變形影響之研究,碩士學位論文,國立台灣科技大學。
歐章煜(2017),進階深開挖工程分析與設計,科技圖書。
顧曉強, 吳瑞拓, 梁發雲, &高廣遠. (2021). 上海土體小應變硬化模型整套參數取值方法及工程驗證. Rock and Soil Mechanics, 42(3). https://doi.org/10.16285/j.rsm.2020.0741
龔東慶(1997),深開挖依時性之行為分析研究,碩士學位論文,國立臺灣工業技術學院。

QR CODE