簡易檢索 / 詳目顯示

研究生: 陳振宇
Zhen-Yu Chen
論文名稱: A508/IN-182/316L異質銲接件之加凡尼腐蝕
Galvanic corrosion of A508/IN-182/316L dissimilar weldments
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王朝正
Chaur-Jeng Wang
曾傳銘
Chuan-Ming Tseng
陳士勛
Shih-Hsun Chen
梁煥昌
Huan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 異質銲接件加凡尼腐蝕電化學
外文關鍵詞: dissimilar weldments, galvanic corrosion, electrochemical
相關次數: 點閱:266下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用製作之 A508 低合金鋼/IN-182/316L 不銹鋼之異質銲接件。異質銲接件係以鎳基 82/182 合金(Inconel alloy 82/182)為銲料進行 GTAW 及遮蔽氣體電弧銲(Shield Metal Arc Welding, SMAW)填料銲接。透過耐蝕能力評估,探討稀釋率及各區域金屬於加速腐蝕環境中的材料損失,建立實驗系統、評估材料減薄量的方法。
    實驗結果顯示,異質銲接件之三種材料中,因 A508 低合金鋼為相對活性較高之陽極金屬,含有最多的鐵元素且具有最低的腐蝕電位,因此在浸泡試驗中發生嚴重的腐蝕。雖 316L 不銹鋼也具有較多的鐵含量,但與 IN-182 有相近的鉻含量,使其與 IN -182 有相近的腐蝕電位及相當的耐腐蝕性能。在局部動電位極化之數據結果顯示,愈靠近 IN-182 緩衝層時有愈大的腐蝕電流密度,亦即呈現較嚴重的腐蝕。在浸泡試驗之腐蝕深度檢測結果亦顯示,愈靠近 IN-182 緩衝層之 A508 母材有愈大的腐蝕深度。綜合以上試驗的結果,顯示當陽極金屬發生嚴重的加凡尼腐蝕時,因距離效應有愈靠近陰極金屬產生愈嚴重的腐蝕之趨勢。


    This study aims to present the complete analyses for A508 low alloy steel/IN-182/316L stainless steel as assembling of pressurized water reactor (PWR). The buttering procedure carried out by using gas tungsten arc welding with the filler metal Inconel 82, while shield metal arc welding was used for butt welding with the filler metal Inconel 182. The effect of microstructure and resistance on crevice corrosion and galvanic corrosion was thoroughly studied. In this stage, the effect of dilution rate and different weld zone on the thinning rate was investigated. In order to carry out the most proper way to prepare specimens and evaluate the corrosion rate, the specimens were produced by Wire Electrical discharging Machine and well-grinded process at the same time.
    The results show that the low alloy carbon steel, A508, has the lowest corrosion potential among the dissimilar weld. Due to a high iron content, the fusion boundary reveals that the A508 side was suffered by galvanic corrosion. The other reason is inferred to the low chromium and nickel content of A508. Although the fusion boundary also was observed at the IN-182/316L interface, the corrosion rates of both metals are similar. This phenomenon could be attributed to the similarity of chromium content. In the comparison of the anodic polarization test and the immersion test, the A508-side fusion boundary shows the tendency to have higher corrosion current density and the depth of corrosion attack. Overall, the corrosion rate is in relation to the active surface area of A508, which has a relatively lower corrosion potential. Therefore, the more close to the weld metal, the more severe corrosion was investigated at the A508 base metal.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 核電廠組件介紹 3 2.2 管件鋼料 5 2.2.1 低合金鋼 5 2.2.2 不銹鋼 5 2.3 A508/IN-182/316 銲後鋼料之生成相 7 2.3.1 A508 低合金鋼 7 2.3.2 IN-182 及 IN-82 鎳基合金 9 2.3.3 316L 不銹鋼 11 2.4 異質銲接件易受腐蝕之原因 12 2.5 間隙腐蝕原理與發生條件 13 2.6 加凡尼腐蝕 15 2.6.1 加凡尼腐蝕原理與發生條件 15 2.6.2 電極面積的影響 17 2.6.3 加凡尼腐蝕距離效應 19 2.6.4 電解液導電度的影響 20 第三章 實驗方法 22 3.1 實驗流程 22 3.2 試片材料組成 23 3.3 試片製備 25 3.4 電化學試驗 27 3.5 浸泡試驗 29 3.6 表面腐蝕深度量測試驗 31 3.7 實驗設備與分析 32 3.7.1 使用設備 32 3.7.2 分析方法 34 第四章 實驗結果 36 4.1 異質銲接件浸泡試驗 36 4.1.1 試片外觀 36 4.1.2 異質銲接件 A508/IN-182 之試片減薄量 45 4.1.3 異質銲接件 A508/IN-182/316L 之試片減薄量 48 4.2 異質銲接件成分分析 53 4.3 電化學分析 57 4.3.1 銲接件材料之動電位極化 57 4.3.2 局部動電位極化 58 第五章 討論 61 5.1 腐蝕反應機制 61 5.1.1 電極的面積效應 62 5.1.2 距離效應的影響 63 5.1.3 腐蝕過程中氧化層的影響 63 5.2 局部成分對電化學(Ecorr、Icorr)的敏感性 65 5.3 電化學(Icorr)與浸泡試驗的相關性 69 第六章 結論 78 參考文獻 79 附錄 A α-step 數據圖 83 附錄 B 動電位極化曲線圖 87 附錄 C 局部平均腐深度原始值 89

    [1] H. T. Wang, G. Z. Wang, F. Z. Xuan, C. J. Liu, and S. T. Tu, “Local mechanical properties of a dissimilar metal welded joint in nuclear power systems” Mater. Sci., pp. 108-117, 2013.
    [2] M. C. Kim, S. G. Park, K. H. Lee, and B. S. Lee, “Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials” Int. J. Press. Vessels Pip., pp.60-66, 2015.
    [3] R. A. Page, “Stress Corrosion Cracking of Alloys 600 and 900 and Nos. 82 and 182 Weld Metals in High Temperature Water”, Corrosion, Vol. 39, No. 10, p. 409, 1983.
    [4] B. O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, and A. Davoodi, “Microscale investigation of the correlation between microstructure and galvanic corrosion oflow alloy steel A508 and its welded 309/308L stainless steel overlayer”, Corrosion, Vol. 154, p. 49, 2019.
    [5] H. Hänninen, P. Aaltonen, A. Brederholm, U. EhrnstÈn1, H. Gripenberg, A. Toivonen, J. Pitkänen1, and I. Virkkunen “Dissimilar metal weld joints and their performance in nuclear power plant and oil refinery conditions”, VTT research notes 2347, VTT technical research, Finland; 2006.
    [6] R. Singh, “Stresses, Shrinkage, and Distortion in Weldments,” Woodhead Publishing Limited, pp. 201-238, 2016
    [7] R. Singh, “Stainless Steels”, Woodhead Publishing Limited, pp. 83-90, 2016.
    [8] 洪源璟,“異質銲接件經 GTAW 覆銲處理後殘留應力分布”,國立台灣科技大學機械工程系, 碩士論文, pp. 42 - 38, 2018.
    [9] W. Wang, Y. Lu, X. Ding, and T. Shoji, “Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding”, Materials Characterization, Vol. 107, pp. 255-261,
    [10] G. Bao, M. Yamamotoa, and K. Shinozaki, “Precipitation and Cr depletion profiles of Inconel 182 during heat treatments and laser surface melting” J. Mater. Proc. Technol., Vol. 209, pp. 416-425, 2009.
    [11] ASTM A262-02a (Reapproved 2008) “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels”, ASTM, 2008.
    [12] G. Sayiram and N. Arivazhagan, “Microstructural characterization of dissimilar welds between Incoloy 800H and 321 austenitic stainless steel”, Materials Characterization, Vol. 102, pp. 180-188, 2015.
    [13] S. Wang, H. Ming, J. Ding, Z. Zhang, J. Wang, E. H. Han, and A. Atrens, “Effect of H3BO3 on corrosion in 0.01 M NaCl solution of the interface between low alloy steel A508 and alloy 52 M”, Corrosion Science, Vol. 102, pp.469-483, 2016.
    [14] A. I. Karayan and H. Castaneda, “Weld decay failure of a UNS S31603 stainless steel storage tank”, Eng. Fail. Anal., Vol. 44, pp. 351-362, 2014. 
    [15] Z. F. Yin, M. L. Yan, Z. Q. Bai, W. Z. Zhao, and W. J. Zhou, “Galvanic corrosion associated with SM 80SS steel and Ni-based alloy G3 couples in NaCl solution”, Electrochim. Acta, Vol. 53, pp. 6285-6292, 2008.
    [16] Q. Qiao, G. Cheng, W. Wu, Y. Li, H. Huang, and Z. Wei, “Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors”, Eng. Fail. Anal., Vol. 64, pp. 126-143, 2016.
    [17] A. Stenta, S. Basco, A. Smith, C. B. Clemons, D. Golovaty, K. L. Kreider, J. Wilder, G.W. Young, and R. S. Lillard, “One-dimensional approach to modeling damage evolution in galvanic corrosion”, Corrosion Science., Vol. 88, pp. 36-48, 2014.
    [18] 柯賢文、王朝正, “腐蝕及其防治”, 全華圖書股份有限公司, 2014.
    [19] R Reda, “Corrosion & Protection of Metals” DOI: 10.13140/RG.2.2.19807.97447, 2017.
    [20] ATLAS STEELS, “GALVANIC CORROSION”, ATLAS TECH NOTE No. 7, p.3, 2010.
    [21] H. R. Copson, “Distribution of Galvanic Corrosion”, Trans. Electrochem. Soc., Vol. 84, p.71, 1943.
    [22] X. G. Zhang and E. M. Valeriote, “Galvanic Protection of Steel and Galvanic Corrosion of Zinc under Thin Layer Electrolytes,” Corrosion Science., Vol. 34, p. 1957, 1993.
    [23] X. G. Zhang “Uhlig’s Corrosion Handbook Ch.10 Galvanic Corrosion”, p. 123, 2011. 
    [24] D. A. Tanner, and J. S. Robinson, “Reducing residual stress in 2014 aluminium alloy die forgings”, Marerial & Design, Vol. 29, pp. 1489-1496, 2008.
    [25] 劉斌、李新民、宋利君、陳 躍、田朝暉、方 健,“核電廠主迴路彎頭化學去污及驗證試驗”,Journal of Nuclear and Radiochismistry ,Vol. 40, pp. 388-392, 2018.

    QR CODE