簡易檢索 / 詳目顯示

研究生: 江韋陸
Wei-Lu Chiang
論文名稱: 高載子遷移率金屬氧化物薄膜電晶體之開發與研究
Development and investigation of high mobility oxide thin film transistor
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
Ching-Lin Fan
徐世祥
Shih-Hsiang Hsu
顏文正
Yan-Wen Jeng
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: 非晶氧化物半導體銦鋅錫氧化物高載子遷移率穩定度
外文關鍵詞: AOS, IZTO, high mobility, stablity
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於 金屬氧化物薄膜電晶體獨特的製程質及材料性,使 金屬氧化物薄膜電晶體獨特的製程質及材料性,使 金屬氧化物薄膜電晶體獨特的製程質及材料性,使 它們在新興的薄膜電晶 它們在新興的薄膜電晶 體應用上成為最具有競爭性的選擇,包含 體應用上成為最具有競爭性的選擇,包含 體應用上成為最具有競爭性的選擇,包含 均勻性好可以應用在大尺寸的面板、低溫 均勻性好可以應用在大尺寸的面板、低溫 均勻性好可以應用在大尺寸的面板、低溫 製程 而應用於可撓式的結構以及低成本 製作 等特殊需求的產品上。 等特殊需求的產品上。 為了滿足下一世代的顯 為了滿足下一世代的顯 示 器, TFT的載子遷移率需要更高,所以 的載子遷移率需要更高,所以 的載子遷移率需要更高,所以 的載子遷移率需要更高,所以 我們將使用 氧化 鋅錫來當作主動層,因為氧化 鋅錫來當作主動層,因為氧化 鋅錫來當作主動層,因為銦鋅錫具有比氧化鎵更高的載子遷移率,搭配 銦鋅錫具有比氧化鎵更高的載子遷移率,搭配 銦鋅錫具有比氧化鎵更高的載子遷移率,搭配 高介電常數 (High-k)料二氧化鉿 (HfO2)來製備元件之閘極絕緣層 (Gate Insulator)並且在 並且在 本論文 中研究 及評估以 IZTO-TFT5之電 特性 與穩定。
    首先,我們利用金屬遮罩 (Shadow Mask)製作 TFT元件,並先以不通氧氣環境下製 元件,並先以不通氧氣環境下製 作 IZTO薄膜當作 主動層來製薄膜當作 主動層來製TFT元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證元件, 並分析其電特性使用霍爾量測加以佐證在來使用不同厚度的 IZTO薄膜當作 主動層來製薄膜當作 主動層來製TFT元件 ,並且用或爾量測與 並且用或爾量測與 AFM來分析電性圖的結果。為了降低 OFF電流,第二部份我們使用黃光的製程來作不同 電流,第二部份我們使用黃光的製程來作不同
    II
    主動層厚度 之元件,發現在主動層厚度 之元件,發現在主動層厚度 之元件,發現在90 nm之元件有最高的載子遷移率 (99 cm2/V s), 並分析在不同厚度下之元件電特性以及遲滯,最重要的是我們也探討其對 並分析在不同厚度下之元件電特性以及遲滯,最重要的是我們也探討其對 並分析在不同厚度下之元件電特性以及遲滯,最重要的是我們也探討其對 於穩定性的表現探討,而在最後一個章節是我們結論以及未來展望。


    Metal oxide semiconductor is considered to be the most competitive TFT material for last decade. It has several advantages such as great uniformity for large size display, low fabrication temperature and low production cost. For next generation display, the TFT device need be improve, spiecially in mobility. In order to pursue greater metal oxide TFT performance, IZTO was introduced as the active layer. Becauce IZTO-TFT have higher mobility than IGZO-TFT with the same dielectric about 30 (cm2/V s). To get higher mobility with IZTO-TFT, high-k dielectric was used as a gate insulator in TFT structure. Among all high-k dielectrics, HfO2 is well known for its high dielectric constant and large band gap. Therefore, we will focus on evaluating the basic properties and electrical characteristic of IZTO thin film as active layer in this study.
    First, we made the TFT devices by using a shadow mask. We made an IZTO film as an active layer in an diffrient oxygen environment to fabricate a TFT deviec, and analyzed its electrical characteristics, using Hall measurements to prove it. Then the TFT deviecs were fabricated by using IZTO films with different thicknesses as active layers, and the electrical characteristic were analyzed HP4145b, proved by Hall measurement and AFM. In order to reduce the OFF current, the second part used the photolithograghy process to fabricate components with different active layer thicknesses. It is found that the active layer 90 nm device has the highest carrier mobility (99 cm2 / V s). The electrical characteristics and
    IV
    hysteresis of components at different thicknesses were analyzed, the most important thing is that we also explore the performance of stability at different thicknesses. In the final chapter is our conclusions and future prospects, and several comparisons had been made between our device and device which was fabricated in same process but different gate insulator

    目錄 論文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI Chapter 1 概論 1 1.1 研究背景 1 1.2 研究動機與方向 4 1.3 論文大綱 5 Chapter 2 材料介紹與理論基礎 6 2.1 閘極絕緣層高介電材料 6 2.1.1 元件尺寸的發展 6 2.1.2 高介電材料的興起 7 2.1.3 高介電材料的選擇 8 2.1.4 常見的高介電材料的種類 11 2.1.5 高介電材料HfO2之製程方式 11 2.2 金屬氧化物半導體介紹 12 2.2.1 金屬氧化物半導體材料概述 12 2.2.2 非晶氧化鋅鋅錫材料特性與電性影響 12 2.3 金屬氧化物薄膜電晶體結構 17 2.4 金屬氧化物膜電晶體操作模式 19 2.5 TFT元件參數萃取方式 23 2.7.1 載子遷移率(Mobility, μ) 23 2.7.2 臨界電壓 (Threshold Voltage, Vth) 25 2.7.3 次臨界斜率 (Subthreshold Swing, S.S) 26 2.7.4 開關電流比(On/Off Current Ratio, IOn/IOff) 26 2.7.5 接觸電阻(Contact Resistance, RC) 27 2.7.6 電容I-V特性量測 29 2.7.7 半導體參數分析儀 (Semiconductor Parameter Analyzer) 29 2.6 IZTO薄膜之材料特性分析 29 2.9.1 場發射掃描式電子顯微鏡 (FE-SEM) 29 2.9.2 橢圓測厚儀 (Ellipsometer) 30 2.9.3 原子力顯微鏡 (AFM) 31 2.9.4 UV/可見光光譜儀 (UV/Vis spectrometer) 30 2.9.5 霍爾量測 (Hall measurment) 31 Chapter 3 以不同製程通氧比例與不同厚度之氧化銦鋅錫(IZTO)當作主動層之金 屬氧化物薄膜電晶體電特性及材料分析之研究 34 3.1 實驗說明 34 3.2 元件製作前之量測 34 3.2.1 IZTO薄膜鍍率之量測 35 3.2.2 IZTO薄膜光學能隙之量測 36 3.3 元件製作 37 3.4 結果與討論 43 3.4.1 在不同通氧比例下製作IZTO當作主動層之TFT元件電特性 42 3.4.2 不同厚度IZTO薄膜當作主動層之TFT元件電特性 47 3.5 結論 54 Chapter 4 氧化銦鋅錫(IZTO)當作主動層之小尺寸金屬氧化物薄膜電晶體製作及 電特性之研究 56 4.1 實驗說明 56 4.2 元件製作 56 4.2.1 以黃光微影製程圖案化IZTO-TFT之小尺寸元件 57 4.2.2 IZTO-TFT小尺寸元件結構說明 58 4.3 結果與討論 63 4.3.1 以不同厚度製作IZTO主動層之元件電特性 63 4.3.2 以不同厚度製作IZTO主動層之元件接觸電阻(Rc)分析 72 4.3.3 以不同厚度製作IZTO主動層之元件磁滯(Hysteresis)效應 74 4.3.4 以不同厚度製作IZTO主動層之元件在電極偏壓劣化可靠度分析 78 4.4 結論 96 Chapter 5 結論與未來展望 99 參考文獻 102

    參考文獻
    [1] J. F. Wager, "ZnO Transparent Thin-Film Transistor Device Physics," Science, vol. 300, no. 5623, pp. 1245-1246, 2003.
    [2] N. Munzenrieder, C. Zysset, T. Kinkeldei and G. Troster, "Design Rules for IGZO Logic Gates on Plastic Foil Enabling Operation at Bending Radii of 3.5 mm," IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2153-2159, 2012.
    [3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 25, pp. 488-492, 2004.
    [4] 王木俊 且 劉傳璽, 薄膜電晶體液晶顯示器原理與實務, 新文京開發出版股份有限公司, 2008.
    [5] SONY, PIDA, 2007
    [6] B. Y. Tsui and H. W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide," Journal of Applied Physics, vol. 93, pp. 10119-10124, 2003.
    [7] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
    [8] P. Zurcher, C. J. Tracy, R. E. Jones Jr, P. Alluri, P. Y. Chu, B. Jiang, M. Kim, B. M. Melnick, M. V. Raymond, D. Roberts, T. P. Remmel, T. L. Tsai, B. E. White, S. Zafar and S. J. Gillespie, "Barium Strontium Titanate Capacitors for Embedded Dram," Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
    [9] A. Grill, "Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices," Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
    [10] K. J. Hubbard and D. G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
    [11] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff and J. C. S. Woo, "The impact of High-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [12] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee and K. Fujihara, "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition," Applied Physics Letters, vol. 81, no. 3, pp. 472-474, 2002.
    [13] M. H. Cho, D. H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim and C. N. Whang, "Thickness dependence of Y2O3 films grown on an oxidized Si surface," Journal of Vacuum Science & Technology A, vol. 19, no. 1, pp. 200-206, 2001.
    [14] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi and J. Lee, "Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon," Applied Physics Letters, vol. 74, no. 21, pp. 3143-3145, 1999.
    [15] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
    [16] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, vol. 18, no. 3, pp. 1785-1791, 2000.
    [17] G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
    [18] D. C. Hsu, Y. K. Chang, M. T. Wang, P. C. Juan, Y. L. Wang and J. Y. M. Lee, "The positive bias temperature instability of nn-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric," Applied Physics Letters, vol. 92, p. 202901, 2008.
    [19] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application," Technical Digest-International Electron Devices Meeting., vol. 1999, pp. 133-136, 1999.
    [20] I. Barin, Thermochemical Data of Pure Substances, VCH, Weiheim, 1989.
    [21] A. Convertino, A. Valentini, T. Ligonzo and R. Cingolani, "Organic–inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors," Applied Physics Letters, vol. 71, p. 732, 1997.
    [22] N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, "Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: Interfacial Si oxidation and silicidation," Japanese Jouranl of Applied Physics, vol. 42, pp. 138-140, 2003.
    [23] K. J. Choi, W. C. Shin and S. G. Yoon, "Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2," Journal of Materials Research, vol. 18, no. 1, pp. 60-65, 2003.
    [24] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato and R. Martins, "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application," Materials Science and Engineering B, vol. 109, pp. 89-93, 2004.
    [25] O. Renault, D. Samour, D. Rouchon, P. Holliger, A. M. Papon, D. Blin and S. Marthon, "Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si," Thin Solid Films, vol. 428, pp. 190-194, 2003.
    [26] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor," Philosophical Magazine Part B., vol. 81, no. 5, pp. 501-515, 2001.
    [27] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang and B. Lewis, "A study of low temperature crystallization of amorphous thin film indium-tin-oxide," Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
    [28] M. Yasukawa, H. Hosono, N. Ueda and H. Kawazoe, "Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film.," Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
    [29] E. Arca, K. Fleischer and I. V. Shvets, "Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide," Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
    [30] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "p-channel thin-film transistor using p-type oxide semiconductor, SnO," Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
    [31] H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, "Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial film," Applied Physics Letters, vol. 82, no. 7, p. 1048, 2003.
    [32] A. J. Bosman and C. Crevecoeur, "Mechanism of the Electrical Conduction in Li-Doped NiO," Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
    [33] M. L. Tu, Y. K. Su and C. Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
    [34] D. C. Look, G. M. Renlund, R. H. Burgener II and J. R. Sizelove, "As-doped p-type ZnO produced by an evaporation/sputtering process," Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
    [35] Y. Ohya, H. Saiki and Y. Takahashi, "Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide," Journal of Materials Science, vol. 29, no. 15, pp. 4099-4103, 1994.
    [36] R. L. Huffman, "Zno-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, no. 10, pp. 5813-5819, 2004.
    [37] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [38] H. Hosono, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, "Factors controlling electron transport properties in transparent amorphous oxide semiconductors," Journal of Non-Crystalline Solids, vol. 354, pp. 2796-2800, 2008.
    [39] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Applied Physics Letters, vol. 86, no. 1, p. 013503, 2005.
    [40] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): A Zn 4s conductor," Philosophical Magazine B, vol. 81, no. 5, pp. 501-515, 2001.
    [41] H. Hosono, M. Yasukawa and H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
    [42] J. Y. Noh, H. Kim, H. H. Nahm, Y.S. Kim, D. H. Kim, B.D . Ahn, J. H. Lim, G. H. Kim, J. H. Lee, and J. Song, "Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors"Journal of Applied Physics, vol. 113, p.183706, 2013
    [43] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors" Science and Technology of Advancedmaterials, vol. 11, p. 044305, 2010
    [44] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kaneko, "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors," Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
    [45] 戴亞翔, TFT-LCD 面板的驅動與設計, 五南圖書出版社股份有限公司, 2008.
    [46] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and C. J. Kim, "Control of threshold voltage in ZnO-based oxide thin film transistors," Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
    [47] P. Barquinha, L. Pereira, G. Gonalves, R. Martins and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
    [48] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song and C. S. Hwang, "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors," Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
    [49] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors," Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011.
    [50] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante and E. Fortunato, "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material," IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954-960, 2008.
    [51] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
    [52] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
    [53] H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon and R. D. Dupuis, "Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides," Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
    [54] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Erratum: Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 2 PART 1, p. 029201, 2012.
    [55] J. M. Lee, K. K. Kim, S. J. Park and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, no. 24, pp. 3842-3844, 2001.
    [56] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and S. I. Kim, "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Applied Physics Letters, vol. 90, no. 26, p. 262106, 2007.
    [57] R. Chen, W. Zhou, M. Zhang, M. Wong and H. S. Kwok, "Self-aligned indium-gallium-zinc oxide thin-film transistor with phosphorus-doped source/drain regions," IEEE Electron Device Letters, vol. 33, no. 8, pp. 1150-1152, 2012.
    [58] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes," Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
    [59] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn and J. W. Park, "An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors," Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
    [60] K. Jang, J. Raja, Y. J. Lee, D. Kim, and J. Yi "Effects of Carrier Concentration, Indium Content, and Crystallinity on the Electrical Properties of Indium-Tin-Zinc-Oxide Thin-Film Transistors", IEEE Electron Device Letters, vol. 34, no. 9, pp. 1151-1154, 2013.
    [61] Y. H. Lin and J. C. Chou, "Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material," Journal of Nanomaterials, vol. 2014, p. 347858, 2014.
    [62] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, "Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor", Applied Physics Letters, vol. 98, p. 122105, 2011
    [63] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, pp. 1015-1019, 2011.
    [64] K. Y. Chan, E. Bunte, H. Stiebig and D. Knipp, "Influence of contact effect on the performance of microcrystalline silicon thin-film transistors," Applied Physics Letters, vol. 89, p. 203509, 2006.
    [65] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, "Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor," Applied Physics Letters, vol. 94, p. 133502, 2009.
    [66] H. H. Hsu, C. Y. Chang, C. H. Cheng, P. C. Chen, Y. C. Chiu, P. Chiou and C. P. Cheng, " High Mobility Field-Effect Thin Film Transistor Using Room-Temperature High-k Gate Dielectrics," Journal of Display Technology, vol. 10, no. 10, pp. 875-881, 2014.
    [67] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [68] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [69] J. Q. Song, L. X. Qian, "Improved performance of amorphous InGaZnO thin-film transistor by Hf incorporation in La2O3 gate dielectric", IEEE Transactions on Device and Materials Reliability, 2018.
    [70] J. Jeong and Y. Hong, "Debye Length and Active LayerThickness-Dependent Performance Variations of Amorphous Oxide-Based TFTs", Transactions on Electron Devices, vol. 59, no. 3, p. 310, 2012.
    [71] S. Jin, T. W. Kim, Y. G. Seol, M. Mativenga, and J. Jang, "Reduction of Positive-Bias-Stress Effects in Bulk-Accumulation Amorphous-InGaZnO TFTs", IEEE Electron Device Letters, vol. 35, no. 5, p. 560, 2014.
    [72] H. Tang, K. Ide, H. Hiramatsu, S. Ueda, N. Ohashi, H. Kumomi, H. Hosono, T. Kamiya, "Effects of thermal annealing on elimination of deep defects in amorphous In–Ga–Zn–O thin-film transistors", Thin Solid Films, vol. 614, pp. 73–78, 2016.
    [73] P. T. Liu, C. H. Changa and C. S. Fuhb, "Enhancement of reliability and stability for
    transparent amorphous indium-zinc-tin-oxide thin film transistors", RSC Advances, vol. 6, pp. 106374–106379, 2016.
    [74] P. T. Liu, C. S. Fuh, Y. S. Fan, and S. M. Szeb"InZnSnO-Based Electronic Devices for Flat Panel Display Applications", ECS Journal of Solid State Science and Technology, vol. 9, pp. Q3054-Q3057, 2014
    [75] T. M. Pan, B. J. Peng, C. H. Chen, "Structural and electrical properties of high-k CeTixOy, ErTixOy and YbTixOy gate dielectrics for InZnSnO thin film transistors", Journal of Alloys and Compounds, vol. 722, pp. 637-643, 2017
    [76] D. B. Ruana, P. T. Liu, Y. C. Chiub, K. Z. Kana, M. C. Yub, T. C. Chienb, Y. H. Chenb, P. Y. Kuob, S. M. Szea, "Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition", Thin Solid Films, 2018

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE