簡易檢索 / 詳目顯示

研究生: 林綉禎
Hsiu-Chen Lin
論文名稱: 奈米光觸媒多孔隙混凝土空氣淨化研究
Application of Nano Photocatalyst Porous Concrete on Air Purification
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 黃兆龍
Chao-Lung Hwaung
賴宏仁
Hong-Jen Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: 二氧化鈦光觸媒空氣淨化二氧化氮多孔隙混凝土
外文關鍵詞: TiO2; nano-photocatalyst; air purification; NO2;
相關次數: 點閱:366下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

環境淨化已成為各國最重視的課題,而奈米光觸媒具有改善大氣環境污染之功效,為目前最有效且無副作用之空氣淨化材料。本研究將光觸媒結合多孔隙混凝土為一種室外空氣淨化材料,並將光催化反應之影響因子模擬為試驗操作參數,包含:不同孔隙率之多孔隙混凝土、不同紫外光強度及氧化矽之使用等,並以水洗方式探討光觸媒之回復性能;透過試驗評估光觸媒材料於常溫低濕下之空氣淨化效能。
本研究結果顯示;二氧化氮濃度受到測試箱內壁及混凝土試體吸附影響,早期降解速度稍快,後期降解速度則較為緩慢。由二氧化氮降解各項試驗中得知,紫外光強度越大光催化反應速率越快。水洗前之二氧化氮降解速度比水洗後快,但各組水洗回復率仍可達到八成以上;且以含有氧化矽之奈米光觸媒多孔隙混凝土(試驗組二)之二氧化氮降解速度較快。光觸媒與混凝土之塗佈中間層有助提高耐久性。孔隙率會影響光觸媒成膜及附著狀況,間接影響光催化反應效率;孔隙率越小漿量越多,比表面積越小,光觸媒含量少,故光催化反應速率慢;而孔隙率越大漿量越少,比表面積越大,光觸媒含量雖較多,但因孔隙率過大,部分光觸媒無法吸收到光能而激發產生光觸媒效用;試驗結果得知,奈米光觸媒多孔隙混凝土於孔隙率15%及20%下空氣淨化效能最好。依據統計分析結果顯示孔隙率在20%時淨化空氣能力為最佳。


The environmental purify has become the most important issue among all the countries. The nano-photocatalyst has the ability to improve the environmental problem such as air pollution. At present, due to no side effect occur the nano-photocatalyst has widely applied to air purification. The study focus on application of Photocatalyst combines with the porous concrete as outdoor air purification material to solve the air pollution problem of Taiwan. To evaluate the photocatalysts reaction under conditions of low humidity and room temperature, the three variables, air voids of porous concrete, intensity of UV light, and factor of SiO2, were considered. Moreover, the reversion efficiency was investigated by perform the water clean method.
The test results show that amount of adsorption of NO2 is affected by box wall and porous concrete. Thus, the degradation speed of initial stage is faster then later stage. As expected, the high intensity UV light result in a high photocatalysts reaction. The test result shows that before water clean the porous concrete has faster degradation speed than after water clean one. However, the reversion efficiency for each test groups has upward to 80%. Furthermore, the porous concrete that surface treating by SiO2 and then coating nano-photocatalyst has high degradation performance. Therefore, the middle layer as SiO2 can helps the long term durability. The nano-photocatalyst of situations of film formation and adhesion is affected by the air voids of porous concrete, and result in different photocatalysts reaction. Based on test results indicating the air voids of porous concrete at 15% and 20% have excellent ability of air purification. In according the statistical analysis show that 20% air voids was recommended to be the appropriate air voids contend.

論文摘要..................................................I ABSTRACT................................................III 致謝.....................................................IV 目錄......................................................V 表目錄..................................................VII 圖目錄...................................................IX 第一章 緒論..............................................1 1.1 研究動機.............................................1 1.2 研究目的.............................................2 1.3 研究方法.............................................2 1.4 研究流程.............................................3 第二章 文獻回顧..........................................5 2.1 奈米光觸媒材料.....................................5 2.1.1 光觸媒簡介.........................................5 2.1.2 奈米二氧化鈦之特性.................................8 2.1.3 二氧化鈦光觸媒之光催化反應機制....................12 2.1.4 二氧化鈦光觸媒應用範圍............................14 2.2 光觸媒空氣淨化之應用..............................18 2.2.1 空氣中主要污染物..................................18 2.2.2 污染物對人體之影響................................20 2.2.3 國內空氣污染現況..................................22 2.2.4 汽機車有害氣體的產生 ..............................24 2.2.5 奈米光觸媒用於消除氮氧化物(NOX)污染.............27 2.3 多孔隙混凝土......................................28 2.3.1 多孔隙混凝土破壞特性..............................31 2.3.2 改善多孔隙混凝土力學強度之方法....................33 2.3.3 多孔隙混凝土配比設計方法..........................34 2.3.4 多孔隙混凝土透水試驗方法..........................35 2.3.5 多孔隙混凝土孔隙率計算............................39 第三章 試驗計畫.........................................40 3.1 試驗流程..........................................40 3.2 試驗參數..........................................42 3.2.1 不同孔隙率之光觸媒多孔隙混凝土....................42 3.2.2 氧化矽之使用......................................42 3.2.3 紫外光強度設定....................................43 3.2.4 水洗回復性測試....................................44 3.3 多孔隙混凝土試驗..................................44 3.3.1 配比設計要求......................................44 3.3.2 多孔隙混凝土拌合方式..............................46 3.3.3 多孔隙混凝土試體規劃與製作方法....................47 3.3.4 試體養護方式......................................48 3.3.5 試驗設備與方法....................................48 3.4 光觸媒光催化反應試驗..............................56 3.4.1 測試樣本備製......................................57 3.4.2 試驗方法概述......................................60 3.4.3 試驗儀器及設備....................................61 3.4.4 二氧化氮去除試驗步驟與方法........................64 第四章 試驗結果分析與討論...............................68 4.1 多孔隙混凝土試驗..................................68 4.1.1 粗粒料基本物理試驗結果............................68 4.1.2 多孔隙混凝土配比設計試拌結果與分析................69 4.1.3 多孔隙混凝土坍度試驗結果..........................71 4.1.4 多孔隙混凝土單位重試驗結果........................72 4.1.5 多孔隙混凝土抗壓強度試驗結果......................72 4.1.6 多孔隙混凝土透水試驗結果..........................73 4.1.7 多孔隙混凝土磨耗試驗結果..........................75 4.2 光觸媒光催化反應試驗..............................76 4.2.1 試體及測試箱內壁吸附對NO2降解之影響...............77 4.2.2 紫外光強度對光催化效能之影響......................79 4.2.3 特殊矽酸化合物(氧化矽)對光催化效能之影響.......107 4.2.4 水洗對光催化效能之回復率.........................114 4.2.5 推估奈米光觸媒多孔隙混凝土之最佳孔隙率...........120 4.2.6 小結.............................................121 第五章 結論與建議......................................123 5.1 結論.............................................123 5.1.1 多孔隙混凝土.....................................123 5.1.2 光觸媒光催化反應.................................123 5.2 建議.............................................125 參考文獻................................................127

1. 行政院環境保護署“空氣污染物削減成效”,http://www.epa.gov.tw/b/b0100.asp?Ct_Code=07X0005426X0005429&L
2. 王勝民,“新世代的生色產品-光催化觸媒“, 化工資訊,pp.34-35, 2000年。
3. W. Stumn, “Chemistry of the Solid-Water Interface”, John Wiley and Sons, New York, 1992.
4. 蔣庭耀,「WOx摻雜TiO2-xNx光觸媒之結構分析與性質」,國立東華大學材料科學與工程研究所碩士論文,民國九十四年。
5. 呂宗昕,“圖解奈米科技與光觸媒“, 商周出版, 2003年。
6. 洪雨利,「溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究」,國立中山大學環境工程研究所碩士論文,民國九十二年。
7. A.Fujishima, K. Hashimoto, T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application”, BKC, Inc. ,125 ,1999.
8. U. Diebold, Surf. Sci. Rep., Vol. 48, P. 53 ,2003.
9. J. K. Burdett, T. Hughbank, G. J. Miller, J. W. Richardson and J. V.Smith, Journal of American Chemical Society, 109, pp.3639-3646,1987.
10. Fox, M. A.; Dulay, M. T., “Hetergeneous photocatalysis”, Chem Rev 3, 93,p.341,1989.
11. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 Sufaces:Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95,735-758.
12. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann , Chemical Reviews 20, pp.69-95, (1995)
13. 曾堯宣,“奈米光觸媒作用原理與其應用範圍”,工研院環安中心。
14. 張致瑋,「隧道車流量、車種與氣固相污染物之相關性研究」,國立成功大學環境工程研究所碩士論文,民國九十五年。
15. 陳秉鈺,「空氣污染與先天性缺陷發生之相關性研究」,國立成功大學環境醫學研究所碩士論文,民國九十三年。
16. 劉太奇,“納米空氣淨化技術”,北京,化學工業出版社,2004年8月。
17. Molhotra, V. M, “No-fines Concrete – Its Properties and Application,” ACI Journal, Vol.73, 1976, pp.628-44.
18. Ghafoori, N. and S. Dutta, “Development of No-Fines Concrete Pavement Applications,” Journal of Transportation Engineering, Aug., 1995, pp.283-288.
19. Report on the 1992 U.S Tour of European Concrete, “The Netherlands” 1992.
20. Taniguchi, T. and T. Yoshida, “Accelerated Loading Test of Porous Cement Concrete Pavement at PWRI Pavement Test Field,” China-Japan Workshop on Pavement Technologies, 2001, Shanghai, China.
21. Yang, J. and G. Jiang, “Experimental Study on Properties of Pervious Concrete Pavement Materials,” Cement and Concrete Research, Vol.33, Issue.3, 2003, pp. 381-386.
22. Pindado, M. Á, A. Aguado, and A. Josa, “Fatigue Behavior of Polymer-Modified Porous Concretes,” Cement and Concrete Research, Vol.29, Issue.7, 1999, pp.1077-1083.
23. 岡田正美、米澤敏男、柳橋邦生、安藤慎一郎,「ポーラスコンクリートの振動締固め方法に關する」,コソクート工學年次論文報告集, Vol.21, 1999, pp.241-247.
24. 潘昌林、邱惠生,「可滲透式人行鋪面材料(無細骨材混凝土)及施工方法研究」,內政部建築研究所,民國八十九年十月。
25. Ghafoori, N. and S. Dutta, “Pavement Thickness Design for No-fines Concrete Parking Lots,” Journal of Transportation Engineering, 1995, pp.476-484.
26. 張洪清、郭秀美、陳淑香,「大孔隙無砂混凝土透水性試驗研究」,華北水利水電學院學報,第二期,1994年6月,第84-89頁,中國。
27. 潘昌林、邱惠生,「可滲透式人行鋪面材料(無細骨材混凝土)及施工方法研究」,內政部建築研究所,民國八十九年十月。
28. 林峰永,「多孔隙瀝青混凝土永久變形特性之試驗室研究」,淡江大學土木工程學系碩士論文,民國八十九年六月。
29. Zhang, R., T. Nakazawa, F. Imai, and N. Shinnishi, “Void Content of No-fines Concrete,”コソクート工學年次論文報告集, Vol.19, No.1, 1997, pp.1051-1056.
30. 吳仁豪,「應用輪跡試驗儀評估多孔隙瀝青混凝土水分侵害特性之初步研究」,淡江大學土木工程學系碩士論文,民國九十一年七月。
31. 吳佳銘,「多孔隙混凝土應用於道路面層工程性質之研究」,淡江大學土木工程學系碩士論文,民國九十三年七月。

QR CODE