簡易檢索 / 詳目顯示

研究生: 關華明
Billy Susilo
論文名稱: Predicting Bacteria in Freshwater based on Environmental Factors by Machine Learning
Predicting Bacteria in Freshwater based on Environmental Factors by Machine Learning
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 蔡完珊
Christina Tsai
于昌平
Chang-Ping Yu
謝佑明
Yo-Ming Hsieh
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 96
中文關鍵詞: bacteria communityenvironmental factorsbioclimatic modelingmulti-output predictionartificial intelligencemachine learningdata mining
外文關鍵詞: bacteria community, environmental factors, bioclimatic modeling, multi-output prediction, artificial intelligence, machine learning, data mining
相關次數: 點閱:455下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The main goal of microbial ecology is to understand the relationship between earth’s microbial community and the environment. This study develops a bioclimatic modeling approach that leverages artificial intelligence techniques to identify the bacteria species in freshwater as a function of environmental factors. Feature reduction and selection are both utilized in the data preprocessing owing to the scarce of available data points collected and missing values of environmental attributes from the river in Southeast China. An optimized machine learner, which supports the adjustment to the multiple-output prediction form, is used in bioclimatic modeling. The accuracy of prediction and applicability of the model can help microbiologists and ecologists in quantifying the predicted bacteria species for further experimental planning with minimal expenditure, which in present day become one of the most serious issues when facing dramatic changes of environmental conditions caused by global warming scenario. This work presents a neoteric approach for potential use in predicting microbial structures in the environment.


    The main goal of microbial ecology is to understand the relationship between earth’s microbial community and the environment. This study develops a bioclimatic modeling approach that leverages artificial intelligence techniques to identify the bacteria species in freshwater as a function of environmental factors. Feature reduction and selection are both utilized in the data preprocessing owing to the scarce of available data points collected and missing values of environmental attributes from the river in Southeast China. An optimized machine learner, which supports the adjustment to the multiple-output prediction form, is used in bioclimatic modeling. The accuracy of prediction and applicability of the model can help microbiologists and ecologists in quantifying the predicted bacteria species for further experimental planning with minimal expenditure, which in present day become one of the most serious issues when facing dramatic changes of environmental conditions caused by global warming scenario. This work presents a neoteric approach for potential use in predicting microbial structures in the environment.

    ABSTRACT i TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES viii ABBREVIATIONS AND SYMBOLS ix 1. Introduction 1 1.1. Research background 1 1.2. Research objectives 3 1.3. Research process 4 1.4. Research importance and contributions 4 2. Literature Review 6 2.1. Ecological informatics 6 2.2. Bacterial community in the river 7 2.3. Environmental and deoxyribose nucleic acid sequencing factor 9 2.4. Current practice of artificial intelligence to predict bacteria community 12 3. Methodology 14 3.1. Data pre-processing 16 3.1.1. Dimensionality reduction 16 3.1.2. Handling of missing data 17 3.2. Hybrid of multi-output model and optimization algorithm 23 3.2.1. Multi-Output Least Square Support Vector Regression 24 3.2.2. Accelerated Particle Swarm Optimization 26 3.3. Performance evaluation 27 4. Data Collections 30 5. Model Development 34 5.1. Determining critical factors related to bacteria in a river 34 5.2. Complementing bacteria community data model development and evaluation 37 5.3. Hybrid model development 42 6. Experimental Results 44 7. Conclusions 48 References 50 APPENDIX A. Original Input Attributes 57 APPENDIX B. Original Output Attributes 58 APPENDIX C. Dimensionality Reduction Stage I 59 APPENDIX D. Dimensionality Reduction Stage II 60 APPENDIX E. Dimensionality Reduction Stage III 61 APPENDIX F. Dimensionality Reduction Stage IV 62 APPENDIX G. Bacteria Datasets Input Attributes 63 APPENDIX H. Bacteria Datasets Output Attributes 66 APPENDIX I. Score Box of Dimensionality Reduction Stage II 69 APPENDIX J. Dissolved Oxygen Attribute Predicted Value 70 APPENDIX K. Tutorial of Dimensionality Reduction Implementation in IBM-SPSS Software 71 APPENDIX L. Optimized Machine Learning Procedure Implemented in MATLAB 75

    Ager, D., Evans, S., Li, H., Lilley, A. K., & Van Der Gast, C. J. (2010). Anthropogenic Disturbance Affects the Structure of Bacterial Communities. Environmental microbiology, 12(3), 670-678.
    Alesheikh, S., Shahtahmassebi, N., Roknabadi, M. R., & Pilevar Shahri, R. (2018). Silicene Nanoribbon as a New DNA Sequencing Device. Physics Letters A, 382(8), 595-600.
    Alexopoulos, A., Plessas, S., & Bezirtzoglou, E. (2009). Water Microbial Ecology. Encyclopedia of Life Sci, 1-24.
    Anandhi, V., & Chezian, R. M. (2013). Support Vector Regression to Forecast the Demand and Supply of Pulpwood. International journal of future computer and communication, 2(3), 266.
    Ansorge, W. J. (2009). Next-Generation DNA Sequencing Techniques. New biotechnology, 25(4), 195-203.
    Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., . . . Yoo, K. (2011). Riverine Coupling of Biogeochemical Cycles between Land, Oceans, and Atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60.
    Bernhard, A. (2010). The Nitrogen Cycle: Processes. Players, and Human.
    Bier, R. L., Bernhardt, E. S., Boot, C. M., Graham, E. B., Hall, E. K., Lennon, J. T., . . . Schimel, J. P. (2015). Linking Microbial Community Structure and Microbial Processes: An Empirical and Conceptual Overview. FEMS microbiology ecology, 91(10), 1-11.
    Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., . . . Huang, X. (2008). The Potential and Challenges of Nanopore Sequencing. Nature biotechnology, 26(10), 1146-1153.
    Breiman, L. (1996). Bagging Predictors. Machine learning, 24(2), 123-140.
    Breznak, J. A., & Costilow, R. N. (2007). Environmental Factors in Growth Methods for General and Molecular Microbiology, Third Edition (pp. 309-329). Washington DC, United States: American Society of Microbiology.
    Buermans, H. P. J., & den Dunnen, J. T. (2014). Next Generation Sequencing Technology: Advances and Applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10), 1932-1941. doi:https://doi.org/10.1016/j.bbadis.2014.06.015
    Cabral, J. P. (2010). Water Microbiology. Bacterial Pathogens and Water. International journal of environmental research and public health, 7(10), 3657-3703.
    Chabé, M., Lokmer, A., & Ségurel, L. (2017). Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends in Parasitology, 33(12), 925-934.
    Chen, H.-L., Yang, B., Wang, G., Wang, S.-J., Liu, J., & Liu, D.-Y. (2012). Support Vector Machine based Diagnostic System for Breast Cancer using Swarm Intelligence. Journal of medical systems, 36(4), 2505-2519.
    Chou, J.-S., Ho, C.-C., & Hoang, H.-S. (2018). Determining Quality of Water in Reservoir using Machine Learning. Ecological Informatics, 44, 57-75. doi:https://doi.org/10.1016/j.ecoinf.2018.01.005
    Chou, J.-S., Yang, K.-H., & Lin, J.-Y. (2016). Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and Metaensemble Methods. Journal of Computing in Civil Engineering, 30(6), 04016036.
    Colin Cameron, A., & Windmeijer, F. A. G. (1997). An R-Squared Measure of Goodness of Fit for Some Common Nonlinear Regression Models. Journal of Econometrics, 77(2), 329-342. doi:https://doi.org/10.1016/S0304-4076(96)01818-0
    Crisci, C., Ghattas, B., & Perera, G. (2012). A Review of Supervised Machine Learning Algorithms and Their Applications to Ecological Data. Ecological modelling, 240, 113-122.
    Crump, B. C., Amaral-Zettler, L. A., & Kling, G. W. (2012). Microbial Diversity in Arctic Freshwaters is Structured by Inoculation of Microbes from Soils. The ISME journal, 6(9), 1629-1639.
    Crump, B. C., Peterson, B. J., Raymond, P. A., Amon, R. M., Rinehart, A., McClelland, J. W., & Holmes, R. M. (2009). Circumpolar Synchrony in Big River Bacterioplankton. Proceedings of the National Academy of Sciences, 106(50), 21208-21212.
    Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random Forests for Classification in Ecology. Ecology, 88(11), 2783-2792.
    Dobler, C. P., & Anderson-Cook, C. M. (2005). Forecasting, Time Series, and Regression: An Applied Approach. The American Statistician, 59(3), 278.
    Dreyfus-Leon, M. J., & Scardi, M. (2008). Application of Ecological Informatics In B. D. Fath (Ed.), Encyclopedia of Ecology (pp. 222-227). Oxford: Academic Press.
    Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The Microbial Engines that Drive Earth's Biogeochemical Cycles. science, 320(5879), 1034-1039.
    Famili, A., Shen, W.-M., Weber, R., & Simoudis, E. (1997). Data Preprocessing and Intelligent Data Analysis. Intelligent Data Analysis, 1(1), 3-23. doi:https://doi.org/10.1016/S1088-467X(98)00007-9
    Feng, Y., Zhang, Y., Ying, C., Wang, D., & Du, C. (2015). Nanopore-Based Fourth-Generation DNA Sequencing Technology. Genomics, proteomics & bioinformatics, 13(1), 4-16.
    Fenwick, A. (2006). Waterborne Infectious Diseases—Could They be Consigned to History? science, 313(5790), 1077-1081.
    Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017). Effect of Fertilization on Soil Microorganisms in Paddy Rice Systems – A Meta Analysis. Soil Biology and Biochemistry, 115(Supplement C), 452-460.
    George, I., Crop, P., & Servais, P. (2001). Use of β-D-Galactosidase and β-D-Glucuronidase Activities for Quantitative Detection of Total and Fecal Coliforms in Wastewater. Canadian Journal of Microbiology, 47(7), 670-675.
    Ghai, R., Rodŕíguez-Valera, F., McMahon, K. D., Toyama, D., Rinke, R., de Oliveira, T. C. S., . . . Henrique-Silva, F. (2011). Metagenomics of the Water Column in the Pristine Upper Course of the Amazon River. PloS one, 6(8), e23785.
    Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The Role of Soil Microbes in the Global Carbon Cycle: Tracking the Below‐Ground Microbial Processing of Plant‐Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94(12), 2362-2371.
    Grabow, W. (1996). Waterborne Diseases: Update on Water Quality Assessment and Control. Water S. A., 22(2), 193-202.
    Guisan, A., Edwards Jr, T. C., & Hastie, T. (2002). Generalized Linear and Generalized Additive Models in Studies of Species Distributions: Setting the Scene. Ecological modelling, 157(2-3), 89-100.
    Gut, I. G. (2013). New Sequencing Technologies. Clinical and Translational Oncology, 15(11), 879-881.
    Hall, M. A., & Smith, L. A. (1997). Feature Subset Selection: A Correlation Based Filter Approach. 2, 855-858.
    Han, C.-L., Gu, Y.-J., Kong, M., Hu, L.-W., Jia, Y., Li, F.-M., . . . Siddique, K. H. M. Responses of Soil Microorganisms, Carbon and Nitrogen to Freeze–Thaw Cycles in Diverse Land-use Types. Applied Soil Ecology, 124, 211-217.
    Han, J., Kamber, M., & Pei, J. (2012). Data Preprocessing Data Mining (Third Edition) (pp. 83-124). Boston: Morgan Kaufmann.
    Haykin, S. (1994). Neural Networks, A Comprehensive Foundation (0023527617). Retrieved from
    Heather, J. M., & Chain, B. (2016). The Sequence of Sequencers: The History of Sequencing DNA. Genomics, 107(1), 1-8.
    Heintz-Buschart, A., & Wilmes, P. (2017). Human Gut Microbiome: Function Matters. Trends in Microbiology.
    Houssami, N., Lee, C. I., Buist, D. S. M., & Tao, D. (2017). Artificial intelligence for Breast Cancer Screening: Opportunity or Hype? The Breast, 36(Supplement C), 31-33.
    Hu, A., Yang, X., Chen, N., Hou, L., Ma, Y., & Yu, C.-P. (2014). Response of Bacterial Communities to Environmental Changes in a Mesoscale Subtropical Watershed, Southeast China. Science of The Total Environment, 472, 746-756. doi:https://doi.org/10.1016/j.scitotenv.2013.11.097
    Hu, A., Yao, T., Jiao, N., Liu, Y., Yang, Z., & Liu, X. (2010). Community Structures of Ammonia‐Oxidising Archaea and Bacteria in High‐Altitude Lakes on the Tibetan Plateau. Freshwater Biology, 55(11), 2375-2390.
    Huang, L.-S., & Chen, J. (2008). Analysis of Variance, Coefficient of Determination and F-Test for Local Polynomial Regression. The Annals of Statistics, 36(5), 2085-2109.
    Ibekwe, A. M., Ma, J., & Murinda, S. E. (2016). Bacterial Community Composition and Structure in an Urban River Impacted by Different Pollutant Sources. Science of The Total Environment, 566, 1176-1185.
    Jian-Xiang, W., Yue-Hong, S., & Zhao-Ling, T. (2011, August 20th- 21th). Image Clustering Segmentation based on Fuzzy Mutual Information and PSO. Paper presented at the International Conference on Applied Informatics and Communication, Xi'an, China.
    Jiang, T., & Zhou, X. (2018). Gradient/Hessian-Enhanced Least Square Support Vector Regression. Information Processing Letters, 134, 1-8. doi:https://doi.org/10.1016/j.ipl.2018.01.014
    Jones, S. E., Newton, R. J., & McMahon, K. D. (2009). Evidence for Structuring of Bacterial Community Composition by Organic Carbon Source in Temperate Lakes. Environmental microbiology, 11(9), 2463-2472.
    Kang, H. (2013). The Prevention and Handling of the Missing Data. Korean journal of anesthesiology, 64(5), 402-406.
    Kennedy, J. (2011). Particle Swarm Optimization Encyclopedia of machine learning (pp. 760-766). Perth, Australia: Springer.
    Khare, A., & Rangnekar, S. (2013). A Review of Particle Swarm Optimization and Its Applications in Solar Photovoltaic System. Applied Soft Computing, 13(5), 2997-3006.
    Khennak, I., & Drias, H. (2017). An Accelerated PSO for Query Expansion in Web Information Retrieval: Application to Medical Dataset. Applied Intelligence, 47(3), 793-808.
    Kim, S., & Kim, H. (2016). A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. International Journal of Forecasting, 32(3), 669-679. doi:https://doi.org/10.1016/j.ijforecast.2015.12.003
    Kircher, M., Heyn, P., & Kelso, J. (2011). Addressing Challenges in the Production and Analysis of Illumina Sequencing Data. BMC genomics, 12(1), 382.
    Kirchman, D. L., Dittel, A. I., Findlay, S. E., & Fischer, D. (2004). Changes in Bacterial Activity and Community Structure in Response to Dissolved Organic Matter in the Hudson River, New York. Aquatic Microbial Ecology, 35(3), 243-257.
    Kneip, C., Lockhart, P., Voß, C., & Maier, U.-G. (2007). Nitrogen Fixation in Eukaryotes–New Models for Symbiosis. BMC Evolutionary Biology, 7(1), 55.
    Konopka, A. (2009). What is Microbial Community Ecology? The ISME journal, 3(11), 1223-1230.
    Kumar, R. (2013). Decision Tree for the Weather Forecasting. International Journal of Computer Applications, 76(2), 31-34.
    Kwak, S. K., & Kim, J. H. (2017). Statistical Data Preparation: Management of Missing Values and Outliers. Korean journal of anesthesiology, 70(4), 407-411.
    Larsen, P. E., Field, D., & Gilbert, J. A. (2012). Predicting Bacterial Community Assemblages using an Artificial Neural Network Approach. Nature methods, 9(6), 621-625.
    Lear, G., & Lewis, G. (2009). Impact of Catchment Land Use on Bacterial Communities Within Stream Biofilms. Ecological Indicators, 9(5), 848-855.
    Legendre, P., & Legendre, L. F. (2012). Numerical Ecology (Vol. 24): Elsevier.
    Levy, S. E., & Myers, R. M. (2016). Advancements in Next-Generation Sequencing. Annual Review of Genomics and Human Genetics, 17(1), 95-115. doi:10.1146/annurev-genom-083115-022413
    Lewis, D. D. (1992, February 23th). Feature Selection and Feature Extraction for Text Categorization. Paper presented at the Proceedings of the workshop on Speech and Natural Language, New York, United States.
    Li, E. Y. (1994). Artificial Neural Networks and Their Business Applications. Information & Management, 27(5), 303-313.
    Li, H., Jiang, T., & Zhang, K. (2004, February 13th). Efficient and Robust Feature Extraction by Maximum Margin Criterion. Paper presented at the Advances in neural information processing systems, United States.
    Loh, W. Y. (2011). Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14-23.
    Mangalam, A., Shahi, S. K., Luckey, D., Karau, M., Marietta, E., Luo, N., . . . Murray, J. (2017). Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Reports, 20(6), 1269-1277.
    McCluney, K. E., & Sabo, J. L. (2009). Water Availability Directly Determines per Capita Consumption at Two Trophic Levels. Ecology, 90(6), 1463-1469.
    McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of Ecological Communities (Vol. 28): MjM software design Gleneden Beach, OR.
    Newton, R. J., Bootsma, M. J., Morrison, H. G., Sogin, M. L., & McLellan, S. L. (2013). A Microbial Signature Approach to Identify Fecal Pollution in the Waters Off an Urbanized Coast of Lake Michigan. Microbial ecology, 65(4), 1011-1023.
    Niedringhaus, T. P., Milanova, D., Kerby, M. B., Snyder, M. P., & Barron, A. E. (2011). Landscape of Next-Generation Sequencing Technologies. Analytical chemistry, 83(12), 4327-4341.
    Ozay, M., & Vural, F. T. Y. (2012). A New Fuzzy Stacked Generalization Technique and Analysis of Its Performance. arXiv preprint arXiv:1204.0171.
    Pareek, C. S., Smoczynski, R., & Tretyn, A. (2011). Sequencing Technologies and Genome Sequencing. Journal of applied genetics, 52(4), 413-435.
    Park, Y.-S., & Lek, S. (2016). Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling Developments in Environmental Modelling (Vol. 28, pp. 123-140): Elsevier.
    Pirofski, L.-A., & Casadevall, A. (2012). Q and A What is a Pathogen? . BMC Biology, 10, 6-6.
    Qi, Z., Wang, H., Li, J., & Gao, H. (2018). FROG: Inference from Knowledge Base for Missing Value Imputation. Knowledge-Based Systems, 145, 77-90. doi:https://doi.org/10.1016/j.knosys.2018.01.005
    Ragel, A., & Crémilleux, B. (1999). MVC—A Preprocessing Method to Deal with Missing Values. Knowledge-Based Systems, 12(5), 285-291. doi:https://doi.org/10.1016/S0950-7051(99)00022-2
    Rajeswari, K., Vaithiyanathan, V., & Pede, S. V. (2013). Feature Selection for Classification in Medical Data Mining. International Journal of Emerging Trends and Technology in Computer Science (IJETTCS), 2(2), 492-497.
    Ramadevi, G., & Usharani, K. (2013). Study on Dimensionality Reduction Techniques and Applications. Publications of Problems & Application in Engineering Research, 4(1), 134-140.
    Saar-Tsechansky, M., & Provost, F. (2007). Handling Missing Values When Applying Classification Models. Journal of machine learning research, 8(Jul), 1623-1657.
    Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463-5467.
    Sboner, A., Mu, X. J., Greenbaum, D., Auerbach, R. K., & Gerstein, M. B. (2011). The Real Cost of Sequencing: Higher Than You Think! Genome biology, 12(8), 125.
    Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A Window Into Third-Generation Sequencing. Human molecular genetics, 19(R2), R227-R240.
    Schlegel, H. (1981). Microorganisms Involved in the Nitrogen and Sulfur Cycles Biology of Inorganic Nitrogen and Sulfur (pp. 3-12). Berlin, Germany: Springer.
    Shendure, J., & Ji, H. (2008). Next-Generation DNA Sequencing. Nature biotechnology, 26(10), 1135.
    Shiklomanov, I. A. (1998). World Water Resources: A New Appraisal and Assessment for the 21st Century: A Summary of the Monograph World Water Resources. Paris, France: Unesco.
    Sivapriya, T., Kamal, A. N. B., & Thavavel, V. (2012). Imputation and Classification of Missing Data using Least Square Support Vector Machines–A New Approach in Dementia Diagnosis. International Journal of Advanced Research in Artificial Intelligence, 1(4), 29-33.
    Smith, S., & Hollibaugh, J. (1993). Coastal Metabolism and the Oceanic Organic Carbon Balance. Reviews of Geophysics, 31(1), 75-89.
    Ssali, G., & Marwala, T. (2007). Estimation of Missing Data using Computational Intelligence and Decision Trees. arXiv preprint arXiv:0709.1640.
    Stanley, E. H., Fisher, S. G., & Grimm, N. B. (1997). Ecosystem Expansion and Contraction in Streams. BioScience, 47(7), 427-435.
    Steel, K. (1965). Microbial Identification. Microbiology, 40(1), 143-148.
    Timofeev, R. (2004). Classification and Regression Trees (CART) Theory and Applications. Humboldt University, Berlin.
    Tinoco, J., Correia, A. G., & Cortez, P. (2014). Support Vector Machines Applied to Uniaxial Compressive Strength Prediction of Jet Grouting Columns. Computers and Geotechnics, 55, 132-140.
    Treweek, J. (2009). Ecological Impact Assessment. United Kingdom: John Wiley & Sons.
    Tsai, C.-F., Li, M.-L., & Lin, W.-C. (2018). A Class Center based Approach for Missing Value Imputation. Knowledge-Based Systems, 151, 124-135. doi:https://doi.org/10.1016/j.knosys.2018.03.026
    Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimensionality Reduction: A Comparative. J Mach Learn Res, 10, 66-71.
    Vapnik Vladimir, N. (1995). The Nature of Statistical Learning Theory: Berlin, Springer.
    Wang, S.-Y., Sudduth, E. B., Wallenstein, M. D., Wright, J. P., & Bernhardt, E. S. (2011). Watershed Urbanization Alters the Composition and Function of Stream Bacterial Communities. PloS one, 6(8), e22972.
    Watson, J. D., & Crick, F. H. (1953). Molecular Structure of Nucleic Acids. Nature, 171(4356), 737-738.
    Williamson, C. E., Dodds, W., Kratz, T. K., & Palmer, M. A. (2008). Lakes and Streams as Sentinels of Environmental Change in Terrestrial and Atmospheric Processes. Frontiers in Ecology and the Environment, 6(5), 247-254.
    Wolpert, D. H. (1992). Stacked Generalization. Neural networks, 5(2), 241-259.
    Wu, S. G., Wang, Y., Jiang, W., Oyetunde, T., Yao, R., Zhang, X., . . . Bao, F. S. (2016). Rapid Prediction of Bacterial Heterotrophic Fluxomics using Machine Learning and Constraint Programming. PLoS computational biology, 12(4), e1004838.
    Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-Output Least-Squares Support Vector Regression Machines. Pattern Recognition Letters, 34(9), 1078-1084.
    Xue, Y., Zhang, N., Yin, X., & Zheng, H. (2017). Sufficient Dimension Reduction using Hilbert–Schmidt Independence Criterion. Computational Statistics & Data Analysis, 115, 67-78.
    Yan, J., Zhang, B., Liu, N., Yan, S., Cheng, Q., Fan, W., . . . Chen, Z. (2006). Effective and Efficient Dimensionality Reduction for Large-Scale and Streaming Data Preprocessing. IEEE transactions on Knowledge and Data Engineering, 18(3), 320-333.
    Yang, N., & Jiang, X. (2017). Nanocarbons for DNA Sequencing: A Review. Carbon, 115, 293-311. doi:https://doi.org/10.1016/j.carbon.2017.01.012
    Yang, X.-S. (2010). Nature-Inspired Metaheuristic Algorithms. United Kingdom: Luniver press.
    Yang, X.-S., Deb, S., & Fong, S. (2011). Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications. Paper presented at the International Conference on Networked Digital Technologies.
    Yannarell, A. C., & Triplett, E. W. (2005). Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition. Applied and environmental microbiology, 71(1), 227-239.
    Zallen, D. T. (2003). Despite Franklin's Work, Wilkins Earned His Nobel. Nature, 425(6953), 15.
    Zhang, D., Zhu, Q., & Zhang, D. (2017). Multi-Modal Dimensionality Reduction using Effective Distance. Neurocomputing, 259, 130-139.
    Zhang, P., Ren, C., Sun, H., & Min, L. (2018). Sorption, Desorption and Degradation of Neonicotinoids in Four Agricultural Soils and Their Effects on Soil Microorganisms. Science of The Total Environment, 615(Supplement C), 59-69.
    Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and Simple Linear Regression. Radiology, 227(3), 617-628

    無法下載圖示 全文公開日期 2023/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE