簡易檢索 / 詳目顯示

研究生: 孫郁豪
Yu-Hao Sun
論文名稱: 超音波手術刀設計優化的模擬與驗證
Simulation and Verification of Design Optimization for Ultrasonic Dissector
指導教授: 張復瑜
Fuh-Yu Chang
李雨青
Yu-Ching Lee
口試委員: 張復瑜
Fuh-Yu Chang
徐慶琪
Ching-Chi Hsu
李雨青
Yu-Ching Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 106
中文關鍵詞: 超音波手術刀模態分析應力集中諧振響應分析
外文關鍵詞: Ultrasound, dissector , Ansys, modal analysis, stress concentration
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波手術刀是一種利用高頻率超聲波震盪產生的能量來進行手術的醫療器械。現今它被廣泛應用於外科手術中,特別是在神經外科、泌尿外科及微創手術。其原理是利用在器械刀尖傳輸高頻(如55,500 Hz)超音波能量振動,使蛋白質氫鍵變性、斷裂,進而分割組織,並使變性蛋白凝固,實現血管的密封,達到止血的效果。超聲波手術刀的主要優點是它可以實現高精度和準確的切割,同時也能夠快速止血和減少手術時間。此外,由於它的切割方式不會產生明顯的熱量和電流,因此對周圍組織的損傷較小,並且可以減少術後的疼痛和恢復時間。
    本研究透過Ansys的模態分析探討超音波手術刀內芯的共振頻率,及利用諧振響應分析探討內芯之振幅放大率,並將模擬結果與實際量測值進行比較及探討。比較結果顯示共振頻率模擬值與量測值誤差為0.42 %,振幅放大率模擬值與量測值在高低兩種功率模式下誤差為0.88 %-1.3 %。由結果可知本研究所建立的有限元素模型及模擬方法在給定適當的材料性質以及幾何條件下應可正確預測超音波手術刀之共振頻率及振幅放大率。本研究並透過模擬與實驗量測手術刀內芯因操作導致升溫(從20°C至60°C)對刀尖端面位移之影響,模擬結果顯示升溫至60°C造成刀尖最大位移下降3.32 %,而實驗量測結果指出在高低兩種功率模式下,刀尖位移下降1.24 %-3.15 %。
    此外,本研究嘗試以所建立的有限元素模擬探討改善超音波手術刀內芯可能發生的裂痕及疲勞破壞。透過改變幾何特徵,包含導入圓角及開槽,模擬結果顯示內芯振動應力可下降8.1 %,夾持應力可下降5.9 %,及總應力可下降7.2 %。改善後的總應力值小於內芯材料Ti-6Al-4V的最大抗拉強度,期望能因此降低裂痕生成的機率,改善超音波手術刀的可靠性及使用壽命。

    關鍵字:超音波、手術刀、Ti-6Al-4V、Ansys、模態分析、LS-DYNA、應力集中、諧振響應分析


    The ultrasonic dissector is a medical device that can perform surgery with the energy generated by ultrasonic vibrations. It is currently being applied widely in surgery, especially in neurosurgery, urologic surgery and other minimally invasive surgery. The principle is to use the blade tip of the instrument to transmit high-frequency (such as 55,500 Hz) ultrasonic vibrations to denature and break protein hydrogen bonds, further segment tissues, achieve sealing of blood vessels and hemostasis. The main advantage is that it allows for accurate dissection with blood coagulation and shorter surgical time. In addition, because its cutting method does not generate significant heat and current, it causes less damage to surrounding tissues and can reduce the pain and recovery time.
    This study used the modal analysis of Ansys to simulate and study the resonant frequency of the ultrasonic dissector's inner core, and used the resonance response analysis to explore the amplitude ratio of the inner core. The simulation results were compared with the measured values experimentally. The difference of resonant frequency between the simulated value and measured value is 0.42%, and the difference of amplitude ratio, in the high and low power modes, is between 0.88% and 1.3%. The comparison results show that the finite element model and simulation method established in this study can predict the resonance frequency and amplitude ratio correctly with appropriate material properties. This research also studied the effect of the operating temperature rise from 20°C to 60°C on the blade tip displacement with simulation and experiment. The simulation results showed that the maximum tip displacement decreased 3.32% when the temperature increased to 60°C, and the tip displacement decreased by 1.24%-3.15% in the high and low power modes from experiments.
    In addition, this study attempted to use the established finite element simulation to improve the inner core design to avoid possible cracks and fatigue damage. By changing the geometric features, including rounding and slotting, simulation results show that the inner stress due to core vibration can be reduced by 8.1%, and the inner stress from clamping can be reduced by 5.9%, and the total reduced stress is reduced by 7.2%. The improved total stress is less than the ultimate strength of Ti-6Al-4V, the inner core material, and it could reduce the possibility of crack and improve the reliability and useful life of the ultrasonic dissector.

    Keywords: Ultrasound, dissector ,Ti-6Al-4V, Ansys, modal analysis, LS-DYNA, stress concentration, Harmonic response

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 xi 表目錄 xix 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 第二章 文獻回顧 6 2.1超音波手術刀 6 2.1.1超音波手術刀切割機制 7 2.1.2超音波手術刀換能器及振幅放大 9 2.1.3超音波手術刀基本設計理念 11 2.1.4 Ti6-Al4-V性質 12 2.2有限元素分析軟體Ansys 14 2.2.1模態分析 14 2.2.2諧振響應分析 16 2.2.3 LS-DYNA分析[20] 19 2.3超音波振幅放大器 19 2.4超音波手術刀振幅量測方法 26 2.5快速傅立葉轉換 29 第三章 實驗方法 30 3.1超音波手術刀內芯模擬模型建置 31 3.1.1超音波手術刀內芯幾何外型繪製 31 3.1.2建立有限元素模型 32 3.1.3有限元素分析 32 3.1.4材料參數設定 32 3.1.5網格大小與收斂性分析 33 3.2模態分析與諧振響應分析 37 3.2.1模態分析(Modal)參數設定 37 3.2.2諧振響應分析參數設定 37 3.3以諧振響應分析探討幾何形狀以及材料性質對振幅放大率的影響 39 3.3.1頻率範圍與頻率間隔設定 39 3.3.2輸入(input)條件設定 40 3.3.3輸出(Output)條件設定 40 3.4超音波手術刀刀尖與換能器振幅量測 42 3.4.1使用設備與儀器 42 3.4.2量測參數設定 45 3.4.3超音波手術刀刀尖振幅量測步驟 47 3.4.4超音波手術刀換能器振幅量測步驟 49 3.4.5超音波手術刀內芯升溫量測方法 50 3.4.6動態量測範圍分析 51 3.4.7線性誤差與重複性分析 53 3.5超音波手術刀內芯應力分析 54 3.6幾何形狀影響振幅放大率模擬分析 56 3.7 LS-DYNA分析及參數設定 57 3.7.1內芯振動輸入條件之設定 57 3.7.2內芯振動輸出條件之設定 59 3.7.3利用LS-DYNA分析波傳 60 第四章 實驗結果 61 4.1超音波手術刀內芯共振頻率模擬與實驗量測結果 61 4.1.1超音波手術刀內芯模態分析結果 61 4.1.2超音波手術刀內芯諧振響應分析結果 63 4.1.3超音波手術刀刀尖共振頻率量測結果 63 4.1.4超音波手術刀換能器共振頻率量測結果 64 4.1.5超音波手術刀共振頻率量測結果與模態分析共振頻率比較 65 4.2超音波手術刀振幅模擬與實驗量測結果 66 4.2.1超音波手術刀換能器振幅量測結果 67 4.2.2諧振響應分析振幅放大率 69 4.2.3超音波手術刀內芯刀尖振幅量測結果 70 4.2.4超音波手術刀振幅放大率模擬與量測結果比較 73 4.3振幅與共振頻率之模擬與量測結果差異原因探討 74 4.3.1材料性質影響的模擬分析與探討 76 4.3.2內芯升溫影響的量測分析與探討 81 4.4超音波手術刀內芯應力模擬結果及分析 84 4.4.1超音波手術刀夾持應力模擬結果 84 4.4.2幾何改變後之模態分析結果 87 4.4.3超音波手術刀振動應力模擬結果 90 4.4.4總應力模擬結果分析 92 4.5以諧振響應分析內芯直徑縮小處幾何形狀設計對振幅放大率的影響 94 4.6 LS-DYNA超音波手術刀波傳分析 95 4.6.1波傳干涉現象分析 95 4.6.2干涉位置之應力分析 98 第五章 結論與未來展望 100 5.1結論 100 5.2未來展望 102 參考文獻 104

    [1] 賴耿陽,“超音波工學”,初版,復文書局,2005
    [2] 鄭振東,“超音波工程”,初版,全華科技圖書股份有限公司,1999
    [3] Yan Lin., et al., “ Comparison of the effect of the harmonic scalpel and monopolar cautery in transaxillary endoscopic dual-plane breast augmentation”. Journal of Plastic, Reconstructive Aesthetic Surgery ,.83: p.148-154.2023
    [4] 陈燚.,et al., “一種超聲手術刀”.CN Patent.CN110327100B
    [5] Martin Hofmann., et al., “ Development and evaluation of a titanium-based planar ultrasonic scalpel for precision surgery”. Ultrasonics,.130:106927.2023
    [6] Fernando Bejarano.,et al., “An ultrasonic orthopaedic surgical device based on a cymbal transducer”. Ultrasonics,.72:p.24-33.2016
    [7] M.E. Schafer., “Ultrasonic surgical devices and procedures”.Power Ultrasoncis,. 21:p633-660.2015
    [8] 陳聖平,2009,“複雜外型超音波放大器之有限元素分析與最佳化設計”,國立交通大學機械工程系所碩士論文
    [9] Thomas W. Davison.,et al., (Ultracision), 1994. “Clamp coagulator/cutting system for ultrasonic surgical instruments”. US Patent 5,322,055
    [10] Estabrook, B.,et al.,(Ethicon Endo-Surgery), 1999. “Damping ultrasonic transmission components”. US Patent 5,989,275
    [11] R.Krimholtz .,et al., “New equivalent circuit for elementary piezo-electric transducers” .Electron,.6:p398-399.1970
    [12] Tyler Boulter.,et al., “Phacoemulsification in review: Optimization of cataract removal in an in vitro setting”. Survey of Ophthalmology,.64:p.868-875.2019
    [13] Carl B.Estabrook., et al.,(Ultrascision), 1994. “ Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments”. US Patent 5,346,502.
    [14] Zheyu He., et al., “Controlling elastic modulus and ultrasonic property of Ti6Al4V alloy for ultrasonic scalpel”. Materials Today Communications,.33:104212.2022
    [15] Mitsuo Niinomi., “Mechanical properties of biomedical titanium alloys”. Materials Science and Engineering ,.A243: p.231–236.1998
    [16] ANSYS, Inc. ansys.com
    [17] 謝宜均,2012,”超音波振動系統在高溫下之有限元素分析”,國立交通大學機械工程系所碩士論文
    [18] S. R. Singiresu, “ Mechanical Vibration, Fourth Edition, Prentice Hall, 2005.
    [19] 陳精一,“ANSYS 振動學實務分析”,初版。高立圖書有限公司,2005。
    [20] 黃彥豪,”LS-DYNA之模擬分析應用”, 國立虎尾科技大學機械設計工程系碩士論文
    [21] S. G. Amin.,et al., “Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis”. Journal of Materials Processing Technology,.55:p.254-260.1995
    [22] 何四文,“超音波聚能器端面輸出振幅分佈分析”,逢甲大學機械工程研究所碩士論文,1992
    [23] Andrea Cardoni.,et al., “Enhanced vibration performance of ultrasonic block horns”. Ultrasonics,.40:p.365-369.2002
    [24] K.H.W. Seah.,et al., “Design of tool holders for ultrasonic machining
    using FEM”. Journal of Materials Processing Technology,.37:p.801-816.1993
    [25] Dhirendra Pratap Singh.,et al., “Modal Analysis of Ultrasonic Horn using Finite Element Method”.Materials Today,.18:p.3617-3623.2019
    [26] M. Roopa Rani.,et al., “Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding”.Ultrasonics,.53:p.763-772.2013
    [27] Saber Saffar.,et al., “Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: Using thermo-couple”.Ultrasonics,.54:p.821-825.2014
    [28] A. Abdullah, and A. Pak, “Correct Prediction of the Vibration Behavior of a High Power Ultrasonic Transducer by FEM Simulation”. International Journal of Advanced Manufacturing Technology,.39:p.21-28.2008
    [29] Z. J. Chen, and S. Y. Zhang, “Finite Element Simulation of 77 Contact-impact Dynamics for High-power Ultrasonic Processing System” . IEEE,.p.17-21.2008
    [30] Manus Henry, “An ultra-precise Fast Fourier Transform”. Measurement,.220:113372.2023
    [31] Xie Ming and Ding Kang, “Corrections for frequency,amplitude and phase in a fast fourier transform of a harmonic signal”, Mechanical Systems and Signal Processing,.10:p.211-221.1996
    [32] Renliang Zhang.,et al., “A novel technique to predict harmonic response of Particle-damping structure based on ANSYS® secondary development technology”, International Journal of Mechanical Sciences,.144:p.877-886.2018
    [33] 陳岳陞,“轉子引擎支架結構分析與優化” ,逢 甲 大 學
    智能製造與工程管理碩士論文,2022
    [34] Yongchang Yu.,et al., “Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS”, Procedia Engineering,.174:p.956-964.2017
    [35] Pankaj.,et al., “Comparative modal analysis of cantilever beam made of biocomposites using finite element analysis”, Materials Today: Proceedings,.49(5):p.2330-2334.2022
    [36] Guozhuo.,et al., “Laser confocal vibration measurement method with high dynamic range”, Optics Express,.28(7):p.9965-9975.2020
    [37] Sarhan.,et al., “Harmonic Scalpel compared with bipolar electro-cautery hemorrhoidectomy: A randomized controlled trial”. International Journal of Surgery,.8: p.243-247. 2010
    [38] Ethicon Inc.https://www.jnjmedtech.com/en-US/companies/ethicon

    無法下載圖示 全文公開日期 2034/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE