簡易檢索 / 詳目顯示

研究生: 彭東澤
Tung-Tse Peng
論文名稱: 具室溫鐵磁性二氧化鈰奈米顆粒之電子結構研究
The Electronic Structure of Room-Temperature Ferromagnetic Nanocrystalline Cerium Dioxide
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 董崇禮
Chong-Li Dong
陳良益
Liang-Yih Chen
郭永綱
Yung-Kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 二氧化鈦X光吸收光譜超導量子干涉磁化儀室溫鐵磁性
外文關鍵詞: CeO2, XAS, SQUID, RTFM
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用熱沉澱法製備 掺雜 Fe 及 Cr 的 CeO2 奈米粉末。製備完成的奈米粉末利用吸收光譜 (X-ray AbsorptionSpectroscopy,XAS) 量測其電子及原子結構。奈米粉末的粒徑大小及室溫鐵磁性 (Room-Temperature Ferromagnetism, RTFM)則分別利用X 光繞射儀 (XRD) 及超導量子干涉磁化儀 (Superconducting Quantum Interference Device Magnetometer, SQUID) 進行分析。延伸 X 光吸收精細結構 (The Extended X-ray Absorption Fine Structure (EXAFS)) 則是用來分析奈米粉末中元素的配位數及鍵長的改變。結果顯示,摻雜進入奈米粉末的 Cr 及 Fe 均為三價;Cr 摻雜量增加時會造成 Ce3+ 比例的增加 ; CeO2 摻雜 Fe 時,隨著 Fe 摻雜的提升會造成 Ce3+ 比例減少。不同價數的變化會產生不同的取代方式,藉由磁性結果做比較,可發現 CeO2 摻雜不同元素 Fe 及 Cr 時,價數的變化會造成飽和磁化量呈現不同的趨勢。藉由此磁性結果做比較可以建立CeO2 摻雜不同元素的磁性機制。


The Fe-doped and Cr-doped CeO2 nanoparticles were prepared by the precipitation method. The systematic electronic structure and atomic structure of the NPs were investigated by X-ray Absorption Spectroscopy (XAS). The particle size and the magnetic properties of the NPs were characterized by XRD and Supercunducting Quantum Interference Device (SQUID) magnetometer. The Extended X-ray Absorption Fine Structure (EXAFS) spectra provide the information about the first shell coordination and bound length of Fe doped CeO2. The X-ray Absorption Near Edge Structure (XANES) indicated the doped Fe and Cr elements are tri-valence inside the CeO2 NPs, and the valence state of Ce varied with Fe/Cr doping. In Fe:CeO2, the concentration of Ce3+ decreased as the doping concentration increased. On the contrary, the concentration of Ce3+ increased with increasing the concentration of Cr. Combining the results of XAS and SQUID, different results of substitution by Fe and Cr ions in the CeO2 matrix were then proposed. The effect of dopant on the magnetism was then explained by the BMP model and the formation of paired ion.

第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 4 第二章 材料特性與研究背景 5 2.1 二氧化鈰的基本性質 5 2.1.1 物理性質及晶體結構 5 2.1.2 光學性質 6 2.1.3 化學性質 6 2.2 磁性理論 8 2.2.1 磁性材料的分類 9 2.2.2稀磁性半導體研究的背景 12 2.3 稀磁性半導體鐵之磁性模型 19 2.3.1 雙交換機制 (Double exchange mechanism ; DE) 21 2.3.2束縛極化子模型 (Bound magnetic polaron ; BMP) 22 2.3.3超交換偶合機制 (Superexchange Interaction) 23 第三章 實驗方法 25 3.1 二氧化鈰奈米顆粒之製備 25 3.2 二氧化鈰奈米顆粒之分析 26 3.2.1 XRD分析 26 3.2.2 SQUID分析 26 3.2.3 XAS 分析 29 3.2.4 XAS 分析量測方法 31 3.2.5 XAS數據分析 39 第四章 結果與討論 45 4.1 摻雜鉻之二氧化鈰奈米顆粒 45 4.1.1 XRD分析 45 4.1.2 XANES分析 47 4.1.3 SQUID分析 54 4.2 摻雜鐵之二氧化鈰奈米顆粒 57 4.2.1 XRD分析 57 4.2.2 XANES分析 59 4.2.3 EXAFS分析 62 4.2.4 SQUID分析 67 第五章 結論 69 參考文獻 70

[1] 許華書、黃榮俊,「以3d過渡金屬摻雜氧化物之稀磁性半導體研究」,
物理雙月刊,第二十六卷,第四期,第599-606頁(2004)。
[2] 胡裕民,「III-V 稀磁性半導體薄膜之研究與發展」,物理雙月刊,第二六卷,第四期,第587-598頁(2004)。
[3] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000).
[4] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science, Vol. 291, pp. 854 (2001).
[5] W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002).
[6] Y. Matsumoto, R Takahashi, M Murakami, Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. 1204 (2001).
[7] M.Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Nature (London), Vol. 430, pp. 630 (2004).
[8] R. Monnier and B. Delley, Physical Review Letters, Vol. 87, pp. 157204 (2001).
[9] I.S. Elfimov, S. Yunoki and G. A. Sawatzky, Physical Review Letters, Vol. 89, pp. 216403 (2002).
[10] A.Zywietz, J. Furthmuller and F. Bechstedt, Physical Review B, Vol. 62, pp. 6854 (2000).
[11] D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005).
[12] H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 88, pp. 242507 (2006).
[13] H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 90, pp. 102606 (2007).
[14] M. Y. Ge, H. Wang, E. Z. Lin, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Applied Physical Letters, Vol. 93, pp. 062505 (2008).
[15] A Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and K. M. Krishnan, Physical Review Letters, Vol. 94, pp. 157204 (2005).
[16] J. M. D. Coey, M. Venkatestan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles, Physical Review B, Vol.72, pp. 024450 (2005).
[17] K. A. Gschneidner, Jr. and L. R. Eyring, Handbook on the Physics and Chemistry of Rare Earths, North-Holland, New York, Vol. 3 (1984).
[18] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, Vol. 115, pp. 423 (2009).
[19] 張宏毅,二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性,國立成功大學化學工程學系博士論文,(2005).
[20] X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29 (2004).
[21] P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003).
[22] M. Sugiura, Catalysis Surveys from Asia, Vol. 7, pp. 77 (2003).
[23] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008).
[24] X. Chen, G . Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol. 20, pp. 115606 (2009).
[25] Soshin Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社,(1982).
[26] JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 16 (2005) 555– 597
[27] T. Dietl, Semiconductor Science and Technology, Vol. 17, pp. 377 (2002).
[28] Nguyen Hoa Hong, Joe Sakai, Antoine Ruyter, and Virginie Brize , Applied Physics Letters , Vol. 89, pp. 252504 (2006).
[29] N. H. Hong, Joe Sakai, Nathalie Poirot and Virginie Brize, Physical Review B, Vol. 73, pp. 132404 (2006).
[30] A. Sundaresan, R. Bhargavi, N. Rangarajan , Physical Review B , Vol. 74, pp. 161306 (2006).
[31] M. Radović, Z. Dohčević-Mitrović, N. Paunović, M. Šćepanović, B. Matović and Z.V. Popović, Acta Physica Polonica A, Vol. 116, pp. 84 (2009).
[32] N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Physical Review B, Vol. 70, pp. 195204 (2004).
[33] Y. Q. Song, H. W. Zhang, Q. Y. Wen, H. Zhu and J. Q. Xiao, Journal of Applied Physics, Vol. 102, pp. 043912(2007).
[34] J. Phys.: Condens. Matter 22 , pp.216004 (2010).
[35] 戴道生、錢昆明等著,“鐵磁學”,科學出版社,(2000).
[36] 郭光揚,二氧化鈦薄膜室溫鐵磁性來源之研究,國立成功大學物理研究所碩士論文,(2007).
[37] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005).
[38] C. Zener, Physical Review, Vol. 81, pp.440 (1951).
[39] 蔡政宏,磊晶氧化鋅共摻雜鈷、鋁之稀磁性半導體磁性來源的研究,國立成功大學物理研究所碩士論文
[40] Ponnusamy Nachimuthu, Wen-Chen Shih, Ru-Shi Liu, Ling-Yun Jang, Jin-Ming Chen, Journal of Solid State Chemistry, Vol. 149, pp. 408-413 (2000).
[41] Stefan Torbru‥gge* and Michael Reichling , Fachbereich Physik, Universita‥t Osnabru‥ck, Barbarastrase 7, 49076 Osnabru‥ck, Germany, PRL 99, 056101 (2007).
[42] X-Ray Absorption : Principles, Application, Techniques of EXAFS,
SEXAFS, SEXAFS and XANES" , edited by D. C. Koningsberger,
and R. Prins, Chem. Analysis, Vol.92 (Wiley 1988).
[43] D. E. Sayers, E. A. Stern, and F. W. Lytle, Physical Review Letter, Vol.27, pp. 1024 (1971).
[44] 安全訓練手冊,新竹國家同步輻射研究中心
[45] Boon K. Teo ,EXAFS , Basic Principle and Data Analysis, (Springer-Verlag, Berlin, 1986).
[46] Boon K. Teo, EXAFS:Basic Principle and Data Analysis, Springer-
Verlag, New York (1986).
[47] 葉承霖,由 X 光吸收光譜探討以 Fe 當催化層奈米碳管之電子結構,私立淡江大學物理學系研究所碩士論文,(2000)
[48] "EXAFS and Near edge Structure", edited by A. Bianconi, L.
Incoccia and S. Stipcich (Springer-Verlay 1983).
[49] “EXAFS , Basic Principle and Data Analysis”, edited by Boon K.Teo (Springer-Verlag 1986).
[50] D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27,
1024 (1971).
[51] Shih-Yun Chen, Yi-Hsing Lu, Tzu-Wen Huang, Der-Chung Yan, and Chung-Li Dong, J. Phys. Chem. C, 114, 19576–19581 (2010).
[52] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose , Physical Review B 76, 165206 (2007)
[53] M. Vero’nica Ganduglia-Pirovano, Juarez L. F. Da Silva, Joachim Sauer, Physical Review Letters 102, 026101 (2009).
[54] Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Qiang Song, and John Q. Xiao, Journal of Applied Physics 107, 09C307 (2010).

無法下載圖示 全文公開日期 2014/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE