簡易檢索 / 詳目顯示

研究生: 江芝宇
Chih-Yu Chiang
論文名稱: 高矽球墨鑄鐵的鉬含量對顯微結構的影響
The Effect of Molybdenum on Microstructure of High Silicon Ductile Iron
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭偉鈞
Wei-Chun Cheng
林本源
Been-Yuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 103
中文關鍵詞: 高矽鉬球墨鑄鐵單向冷激凝固魚骨狀碳化物
外文關鍵詞: high silicon molybdenum ductile iron, unidirectionally chilled solidification, fish bone-like carbide
相關次數: 點閱:191下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球墨鑄鐵由於其良好之機械性質,用於各工業領域上,但是高矽球墨鑄鐵具耐高溫氧化能力,若再添加鉬元素,則可提升高溫強度。
    本實驗將四種高矽鉬球墨鑄鐵經單向冷激凝固後,觀察各個鑄件之顯微組織,利用影像分析軟體判斷其球墨大小、球化率、球墨密度、球墨所占百分比與碳化物所占百分比,並以SEM觀察細部組織,以EDS分析成分,測試勃氏硬度了解其機械性質。
    實驗發現,隨著鉬元素提高,魚骨狀碳化物所占比例將明顯升高;比起未添加鉬元素之高矽球墨鑄鐵,波來鐵組織所占比例也明顯升高。不論冷卻速率高低,碳化物皆在晶界處形成,最內層為魚骨狀碳化物,較外層則是顆粒狀碳化物與波來鐵組織,即使為鉬含量低之高矽球墨鑄鐵,仍會以網狀分佈在晶胞間;隨著冷卻速率下降,碳化物將以較為集中且巨大的形式存在。高矽鉬球墨鑄鐵的硬度大致上依碳化物多寡與矽含量高低而變化,若碳化物多或矽含量較高,則硬度值較大,但矽的固溶強化效果會有較大影響。


    Ductile iron, with a good mechanical property, has been applied in various industrial fields; however, high silicon ductile iron has a good resistance to high temperature oxidation, the addition of molybdenum elements will result in the increasing of high temperature strength.
    In this study, a number of experiments were conducted on four high silicon molybdenum ductile irons after unidirectionally chilled solidification: OM to study the microstructure at various regions of castings, using image analysis software to determine the percentage of nodular graphite, nodularity, nodular density, and carbide percentage, SEM to study the details of the microstructure, EDS for compositional analysis, Brinell hardness testing to study the mechanical properties.
    The Results shows that increasing with Mo contents the volume fraction of fish bone-like carbide increases, also the pearlite fraction is also significantly higher. Regardless of the cooling rate is high or low, fish bone-like carbides are formed at the grain boundaries, the innermost layer is fish bone-like carbides, encircled with outer layers of granular carbide and pearlite; even in the low molybdenum iron the carbide tend to form a networking structure; with the cooling rate decreased, the carbide grows into larger formations. The hardness of high silicon molybdenum ductile iron depends on the fraction of the carbide and amounts of silicon content, hardness value increases with the increasing of carbide amounts or silicon contents, but the silicon elemental solid strengthening has a greater impact.

    摘要.................................II Abstract............................III 誌謝.................................IV 圖索引..............................VII 表索引...............................IX 第一章 前言...........................1 第二章 文獻探討.......................3 2.1. 鑄鐵.............................3 2.1.1. 平衡相圖.......................3 2.1.2. 碳當量.........................4 2.1.3. 石墨...........................5 2.2. 合金元素對球墨鑄鐵的影響.........7 2.2.1. 矽元素.........................7 2.2.2. 鉬元素.........................8 2.3. 影響碳化物形成的因素............10 2.3.1. 冷卻速率......................10 2.3.2. 凝固與偏析....................10 2.4. 彩色金相........................11 2.4.1. 原理..........................11 2.4.2. 鍍膜方法......................12 2.5. 球墨鑄鐵於常溫之機械性質........13 第三章 實驗方法......................21 3.1. 試驗流程........................21 3.2. 實驗流程與材料準備..............21 3.2.1. 造模..........................21 3.2.2. 澆鑄..........................22 3.2.3. 分光儀檢驗....................22 3.2. 微觀組織分析....................22 3.2.1. 金相觀察......................22 3.2.2. SEM觀察.......................23 3.3. 機械性質試驗....................24 第四章 結果與討論....................29 4.1. 微觀組織分析....................29 4.1.1. 碳化物........................29 4.1.1.1 碳化物所占百分比.............29 4.1.1.2 碳化物的型態與大小...........30 4.1.2. 球狀石墨......................32 4.1.2.1 球墨直徑.....................32 4.1.2.2 平均球墨密度.................33 4.1.2.3 球化率.......................33 4.1.2.4 石墨所占百分比...............34 4.2. 機械性質分析....................35 第五章 結論..........................72 參考文獻.............................73 附錄.................................76 作者簡介............................103

    [1] K. N. Murthy, P. Sampathkumaran and S. Seetharamu, “ Abrasion and Erosion Behaviour of Manganese Alloyed Permanent Moulded Austempered Ductile Iron”, Wear, 267, pp.1393-1398 (2009)
    [2] O. Celik, H. Ahlatci, E. Sabri Kayali and H. Cimeoglu, “ High Temperature Abrasive Wear Behavior of an As-Cast Ductile Iron”, Wear, 258 , pp.189-193(2055)
    [3] 王信義,「高矽低合金球墨鑄鐵偏析現象之研究」,碩士論文,國立台灣科技大學,台北(2004)
    [4] F. Tholence, M. Norell, “High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons”, Oxidation of Metals, 69, pp.13-36(2008)
    [5] K. Kocatepe, M. Cerah and M. Erdogan, “The Tensile Fracture Behaviour of Intercritically Annealed and Quenched + Tempered Ferritic Ductile Iron with Dual Matrix Structure”, Materials and Design, 28, pp.172-181 (2007)
    [6] P.M. Unterweiser, H.E. Boyer and J.J. Kubbs, Heat Treater’s Guide, ASM, OH, pp.1 (1995).
    [7] 吳慶郎,「球墨鑄鐵的凝固模擬」,碩士論文,國立台灣科技大學,台北(1988)
    [8] 周繼揚,鑄鐵彩色金相學,中國,機械工業出版社,第10-12頁(2002)
    [9] 張文雄,「球墨鑄鐵單向凝固之研究」,碩士論文,國立台灣科技大學,台北 (2001)
    [10] I. Riposan, M. Chisamera and S. Stan, T. Skaland , “Surface Graphite Degeneration in Ductile Iron Castings for Resin Molds”, Tsinghua Science and Technology, Vol.13, No.2, pp.157-163 (2008)
    [11] X.J. Sun, Y.X. Li , X. Chen , “Identification and Evaluation of Modification Level for Compacted Graphite Cast Iron”, Journal of Materials Processing Technology, 200, pp.471-480( 2008)
    [12] C. Labrecque and M. Gagne, “Review Ductile Iron Fifty Years of Continuous Development”, Canadian Metallurgical Quarterly, Vol. 37, No 5, pp.343-378(1998)
    [13] M.A. Kenawy, A.M. Abdel-Fattah, N. Okasha and M.E-Gazery, “Mechanical and Structural Properties of Ductile Cast Iron”, Egyptian Journal of Solids, Vol. 24, No.2, pp.151-159 (2001)
    [14] S.H. Park, J.M. Kim, H.J. Kim, S.J. Ko, H.S.Park and J.D. Lim, “Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds”, SAE World Congress, 2005-01-1688, (2005)
    [15] C. Ji , S. Zhu ,“Study of a New type Ductile Iron for Rolling: Composition Design (1)”, Materials Science and Engineering, A 419, pp.318-325 (2006)
    [16] M.B. Lin , C.J. Wang “Microstructure and High temperature Oxidation Behavior of Hot-Dip Aluminized Coating on High Silicon Ductile Iron”, Surface and Coatings Technology, 205, pp.1220-1224 (2010)
    [17] I. Svedung and N.G. Vannerberg , “The Influence of Silicon on the Oxidation Properties of Iron”, Corrosion Science, Vol.14, pp.391-399 (1974)
    [18] Metals Handbook, 8th edition, Vol.8, Metallography, Structure and Phase Diagrams, ASM(1973)
    [19] B. Block, G. Burger, R. Logan and R. Perrin, “Microstructure and Dimensional Stability in Si-Mo Ductile Irons for Elevated Temperature Spplications”, SAE World Congress, 2004-01-0792 (2004)
    [20] H.K. Zeytin, C. Kubilay, H. Aydin, A.A. Ebrinc and B. Aydemir, “Effect of Microstructure on Exhaust Manifold Cracks Produced from SiMo Ductile Iron” , Journal of Iron and Steel Research, International, Vol.16, No.3, pp.32-36 (2009)
    [21] 彩色金相技術編寫组,彩色金相技術[應用圖冊],國防工業出版社,中國,第1-22頁(1991)
    [22] 劉瑞琦,彩色金相圖譜,遼寧科學技術出版社,中國,第2-9頁(1996)
    [23] 張智凱,「含鉬高矽球墨鑄鐵顯微結構與機械性質的研究」,碩士論文,國立台灣科技大學,台北(2006)

    QR CODE