簡易檢索 / 詳目顯示

研究生: Adane Abebe Ayele
Adane Abebe Ayele
論文名稱: 氧化物負載鉑單原子催化劑的設計與合成於鹼性介質中乙二醇電化學氧化為高價值化學品的應用
Design and Synthesis of Oxide Supported Platinum-based Single-Atom Catalysts for Electrochemical Oxidation of Ethylene Glycol to High-value Chemicals in Alkaline Media
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
杜景順
Jing-Shan Do
楊明長
Ming-Chang Yang
王迪彥
Di-Yan Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 144
中文關鍵詞: 鉑基單原子觸媒乙二醇氧化價值產物CO耐受性二氧化鈦鎳摻雜二氧化鈦
外文關鍵詞: Pt Single-atom catalysts, Ethylene glycol oxidation, high-valuable chemicals, CO tolerance, TiO2, Ni-doped TiO2
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

乙二醇因其高沸點、低毒性和高能量密度而成為直接酒精燃料電池的安全替代燃料之一。除此之外,為其電催化氧化提供有價值的化學品。鉑基電催化劑是小型酒精燃料電池中最常用的催化劑。然而,Pt的高成本和對有毒中間物質(如CO)的敏感性以及缺乏通用和最合適的合成催化劑和載體的策略阻礙了其大規模應用。在這方面,小尺寸催化劑,如 Pt單原子催化劑 (SAC) 具有高度吸引廣泛的研究興趣,並且它是減少貴金屬使用的有效平台。此外,碳基負載催化劑上的 EGO 也容易受到 CO 中毒的影響,導致反應動力學緩慢。 因此,適當選擇載體、明智地使用這些昂貴且稀缺的催化劑以及適當設計合成方法至關重要。 催化劑載體的設計和性質對催化性能有顯著影響。
在第一個工作中,通過水熱輔助共沉澱法設計並成功合成了一種由 Pt 單原子沉積在二氧化鈦載體(PtSAC/TiO2)上組成的低成本、高活性和選擇性佳的電催化劑。通過高角度環形暗場掃描透射電子顯微鏡 (HAADF-STEM) 圖像和傅立葉變換延伸 X 射線吸收精細光譜 (FT-EXAFS) 證實了 PtSAC/TiO2 的形成。 HAADF-STEM 圖像顯示 Pt 原子很好地分散在載體上,FT-EXAFS 光譜顯示沒有 Pt-Pt 配位,證實 PtSAC 已成功合成。該催化劑對 EG 的電化學氧化表現出高活性、選擇性和穩定性。我們是第一個應用 PtSAC 將 EG 部分氧化為增值化學品的實驗室。 Pt 和 TiO2 之間的強金屬載體相互作用 (SMSI) 以及相同 Pt 活性位點的可用性提高了 PtSAC/TiO2 的催化選擇性。這有助於 EG 在 PtSAC/TiO2 上氧化,產生乙醇酸鹽和甲酸鹽。 PtSAC 和 EG 之間較高的表面接觸導致對 EGO 的催化性能提高。我們的穩定性測試表明,PtSAC/TiO2 表現出較慢的電流衰減速率和較高的氧化電流密度,從而提供更好的電催化活性和穩定性。合成後的 PtSAC/TiO2 催化劑具有 99.7% 的優異法拉第效率和高穩定性。
在第二個工作中,研究了過渡金屬鎳摻雜二氧化鈦,作為催化劑載體對 EGO 的影響。在這裡,我們在 Ni 摻雜的 TiO2 載體上設計並開發了一種高效、低成本、高活性、高選擇性和耐 CO 的 Pt 單原子系統,其中 Ni 與 Ti 的比例為 1:9 (PtSAC-Ni0.1Ti0.9O2) 使用水熱輔助共沉澱法。 HAADF-STEM 圖像和 FT-EXAFS 光譜揭示了 PtSAC 成功合成在 Ni 摻雜的 TiO2 上。催化劑 PtSAC-Ni0.1Ti0.9O2 增強了對 EGO 的電化學性能,使其成為鹼性介質中的高價值化學品。該催化劑表現出比其 Pt 奈米顆粒對應物和未摻雜的 PtSAC 對應物 (PtSAC-TiO2) 更好的性能。 Ni在催化劑體系中的加入大大提高了催化劑的活性、選擇性和對EGO的CO耐受性。 Ni 為 OH-, 这有助于将CO毒物从催 化剂表面氧化成CO2.電化學測試清楚地表明,催化劑體系中摻雜的 Ni 參與了表面反應 EGO。 PtSAC-Ni0.1Ti0.9O2 在 EGO 中的高活性和選擇性可能是由於 Ni 和 Pt 之間的協同作用。催化劑和載體之間的SMSI提高了產物的催化選擇性。該催化劑選擇性地產生了乙醇酸鹽、甲酸鹽和氫氣。催化劑和載體之間的SMSI對於通過增加它們的穩定性來阻止單原子團聚。合成後的 PtSAC-Ni0.1Ti0.9O2 具有超過 98% 的出色法拉第效率,並且在 12 小時的測試時間內具有很高的穩定性。


Ethylene glycol, EG has emerged as one of the safe alternative fuels for direct alcohol fuel cells, DAFCs because of its high boiling point, minimal toxicity, high energy density, along with less noticeable crossover. Beyond these, EG provides valuable chemicals on its electrocatalytic oxidation, EGO. Pt-based electrocatalysts are the most commonly used catalysts in small alcohol fuel cells. However, the high cost, scarcity, and susceptibility of Pt to poisonous intermediate species such as CO and the lack of universal and best-fit strategy to synthesize catalysts and supports hinder its large-scale applications. In this regard, downsizing catalysts such as Pt to single-atom catalysts (SACs) have highly fascinated extensive research interests and it is an interesting platform for minimizing noble metal usages.
Moreover, EGO on carbon-based supported catalysts is also susceptible to CO poisoning leading to sluggish reaction kinetics. So, an appropriate choice of support, the wise use of these costly and scarce catalysts, and the appropriate design of the synthesis method are crucial. The design and the nature of the catalyst support have shown significant effects on the catalytic performances.
In our first approach, we designed and successfully synthesized an efficient, low-cost, highly active, and selective electrochemical catalyst consisting of Pt single atoms on titanium oxide support (PtSAC/TiO2) via hydrothermal assisted co-precipitation method, which is simple, fast, and efficient. This formation of PtSAC/TiO2 was confirmed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and Fourier-transformed extended X-ray absorption fine spectroscopy (FT-EXAFS). HAADF-STEM images have shown that Pt atoms are well dispersed on the supports and FT- EXAFS spectra have shown no Pt–Pt coordination confirming that PtSACs are successfully synthesized. The catalyst demonstrated high activity, selectivity, and stability for electrochemical oxidation of EG. We are the first to apply PtSACs for partial oxidation of EG to value-added chemicals. The strong metal support interactions (SMSI) between Pt and TiO2 and the availability of identical Pt active sites enhanced the catalytic selectivity of PtSAC/TiO2. These help EG oxidation on PtSAC/TiO2 to produce glycolate and formate selectively. The higher surface contacts between PtSAC and EG lead to an improved catalytic performance towards EGO. Our stability tests demonstrated that PtSAC/TiO2 showed a slower current decay rate and higher oxidation current density, thus providing better electrocatalytic activity and stability. The as-synthesized PtSAC/TiO2 catalyst exhibits an excellent Faradaic efficiency of 99.7% and high stability.
In the second approach, the effect of Ni (transition metal) as Ni-doped TiO2 was investigated as catalyst support towards EGO. Here we designed and developed an efficient, low-cost, highly active, selective, and CO tolerant Pt-based SACs on Ni-doped TiO2 support in which the Ni to Ti ratio was 1:9 (PtSAC-Ni0.1Ti0.9O2) using hydrothermal assisted co-precipitation method. The HAADF-STEM image and FT- EXAFS spectra disclose the successful synthesis of PtSAC on Ni-doped TiO2. The catalyst PtSAC-Ni0.1Ti0.9O2 has enhanced electrochemical performance towards EGO to value-added chemicals in alkaline media. This catalyst has shown even better performance than both its Pt nanoparticle counterpart and the undoped PtSAC counterpart (PtSAC-TiO2). The incorporation of Ni in the catalyst system highly increased the catalyst's activity, selectivity, and CO tolerance of the catalyst towards EGO. Ni has provided adsorption sites for OH- which helps to oxidize the CO poison to CO2 from the catalyst surface. The electrochemical tests have clearly shown that the doped Ni in the catalysts system participates in the surface reaction, EGO. The high activity and selectivity of PtSAC-Ni0.1Ti0.9O2 in EGO may result from synergistic effects between Ni and Pt. SMSI between the catalyst and the supports enhanced catalytic selectivity of products. The catalyst has selectively produced glycolate, formate, and hydrogen. The SMSI between the catalyst and the support is very important to retard the sintering and agglomeration of single atoms there by increasing their stability. The as-synthesized PtSAC-Ni0.1Ti0.9O2 has shown an excellent Faradaic efficiency of greater than 98%, and high stability within 12 hours of testing time.

摘要 i Abstract iii Acknowledgments vi Table of Contents viii List of figures xi List of tables xv List of abbreviations xvi Chapter 1: General Background 1 Chapter 2: Electrochemical oxidation of ethylene glycol (EGO) 5 2.1. Parameters to evaluate the suitability of catalysts for EGO 6 2.1.1. Mass activity and Specific mass activity 6 2.1.2. Current (i) and current density (j) 7 2.1.3. Electrochemically active surface area (ECSA) and the Brunauer, Emmett, and Teller (BET) surface areas 7 2.2. Electrochemical reaction pathways of EG oxidation (EGO) in acidic and alkaline media 10 2.3. Challenges of EGO in acidic and alkaline media 13 2.4. Strategies to solve challenges and improve the electrochemical performance of EGO 14 2.5. Materials as electrocatalysts for efficient EGO 25 2.5.1. Pt group metal-based electrocatalysts 25 2.5.2. Transition metals as dopants in oxide supported Pt group catalysts 27 2.6. Motivation and Objectives of the study 30 2.6.1. Motivation 30 2.6.2. Objectives 31 Chapter 3: Materials, Experimental methods, and Characterizations 33 3.1. List of chemicals, Reagents, Equipment, and Instruments 33 3.2. Synthesis of the catalysts PtSAC/TiO2 and PtSAC/Ni0.1Ti0.9O2 35 3.3. Sample preparations for characterizations and measurements 39 3.4. Material characterization 42 3.4.1. Physical characterization methods 44 3.4.2. Electrochemical measurements 45 3.4.3. Product distribution analysis of EGO 46 Chapter 4: Electrochemical oxidation of ethylene glycol on TiO2-supported platinum single-atom catalyst into high-value chemicals in alkaline media 51 4.1 Introduction 51 4.2. Results and discussion 52 4.2.1. Materials characterization 52 4.2.2. Electrochemical performance analysis 62 4.2.3. Product Distribution 67 4.3. Summary 74 Chapter 5: Ni-doped TiO2 supported Platinum single-atom catalyst for partial oxidation of ethylene glycol into high-value chemicals in alkaline media 77 5.1. Introduction 77 5.2. Results and discussion 79 5.2.1. Materials characterization 79 5.2.2. Electrochemical performance analysis 91 5.2.3. Product distribution analysis 95 5.3. Summary 103 Chapter 6: Conclusions and perspectives 105 6.1. Conclusion 105 6.2. Perspectives 106 References 107

[1] S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, Journal of Industrial Engineering Chemistry, 20 (2014) 1148-1156.
[2] T.S. Zeleke, M.-C. Tsai, M.A. Weret, C.-J. Huang, M.K. Birhanu, T.-C. Liu, C.-P. Huang, Y.-L. Soo, Y.-W. Yang, W.-N. Su, Immobilized single molecular molybdenum disulfide on carbonized polyacrylonitrile for hydrogen evolution reaction, ACS nano, 13 (2019) 6720-6729.
[3] M.B. Griffin, A.A. Rodriguez, M.M. Montemore, J.R. Monnier, C.T. Williams, J.W. Medlin, The selective oxidation of ethylene glycol and 1, 2-propanediol on Au, Pd, and Au–Pd bimetallic catalysts, Journal of catalysis, 307 (2013) 111-120.
[4] A.A. Hathoot, K.M. Hassan, A.G. Ali, A.S. Shatla, H. Baltruschat, M. Abdel-Azzem, Mono and dual hetero-structured M@ poly-1, 2 diaminoanthraquinone (M= Pt, Pd and Pt–Pd) catalysts for the electrooxidation of small organic fuels in alkaline medium, RSC advances, 9 (2019) 1849-1858.
[5] C.C.V. José J. Linares, João B. Costa Santos, Monah M. Magalhães, Jonathan R. N. dos Santos, Leandro L. Carvalho, Renan G. C. S. dos Reis and Flávio Colmati, Electrochemical Reforming of Alcohols, in: K. Scott (Ed.) Electrochemical Methods for Hydrogen Production, Royal Society of Chemistry, Website, 2019, pp. 94.
[6] A. Serov, C. Kwak, Direct hydrazine fuel cells: A review, Applied Catalysis B: Environmental, 98 (2010) 1-9.
[7] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and applications, Chemical Society Reviews, 41 (2012) 4218-4244.
[8] A. Kumar, S. Shrivastava, N. Verma, C.-C. Hsueh, C.-T. Chang, B.-Y.J.P.S. Chen, Electrolyte-free electro-oxidation of aqueous glyphosate: CuPc-ACF electrode and optimization of operating parameters, Process Safety Environmental Protection, 142 (2020) 260-271.
[9] Y. Liu, P. Hu, M. Wei, C. Wang, Electrocatalytic study of ethylene glycol oxidation on Pt3Sn alloy nanoparticles, ChemElectroChem, 6 (2019) 1004-1008.
[10] H. Wang, B. Jiang, T.-T. Zhao, K. Jiang, Y.-Y. Yang, J. Zhang, Z. Xie, W.-B. Cai, Electrocatalysis of ethylene glycol oxidation on bare and bi-modified Pd concave nanocubes in alkaline solution: an interfacial infrared spectroscopic investigation, ACS Catalysis, 7 (2017) 2033-2041.
[11] N. Ueda, Y. Nakagawa, K. Tomishige, Conversion of glycerol to ethylene glycol over Pt-modified Ni catalyst, Chemistry letters, 39 (2010) 506-507.
[12] R. Myrstad, S. Eri, P. Pfeifer, E. Rytter, A. Holmen, Fischer–Tropsch synthesis in a microstructured reactor, Catalysis Today, 147 (2009) S301-S304.
[13] F. Gao, Y. Zhang, P. Song, J. Wang, T. Song, C. Wang, L. Song, Y. Shiraishi, Y. Du, Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation, Journal of Materials Chemistry A, 7 (2019) 7891-7896.
[14] X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis, Accounts of chemical research, 46 (2013) 1740-1748.
[15] L. Hong, Y. Hao, Y. Yang, J. Yuan, L. Niu, Synthesis of graphene-supported one-dimensional nanoporous Pt based catalysts, and their enhanced performance on methanol electro-oxidation, Nanotechnology, 26 (2015) 045604.
[16] S.A. Abbas, J.T. Song, Y.C. Tan, K.M. Nam, J. Oh, K.-D. Jung, Synthesis of a Nickel Single-Atom Catalyst Based on Ni–N4–x C x Active Sites for Highly Efficient CO2 Reduction Utilizing a Gas Diffusion Electrode, ACS Applied Energy Materials, 3 (2020) 8739-8745.
[17] K. Maiti, S. Maiti, M.T. Curnan, H.J. Kim, J.W. Han, Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions, Advanced Energy Materials, 11 (2021) 2101670.
[18] M. Macino, A.J. Barnes, S.M. Althahban, R. Qu, E.K. Gibson, D.J. Morgan, S.J. Freakley, N. Dimitratos, C.J. Kiely, X. Gao, Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene, Nature Catalysis, 2 (2019) 873-881.
[19] A. Serov, C. Kwak, Recent achievements in direct ethylene glycol fuel cells (DEGFC), Appl. Catal. B, 97 (2010) 1-12.
[20] L. An, R. Chen, Mathematical modeling of direct formate fuel cells, Applied Thermal Engineering, 124 (2017) 232-240.
[21] L. An, R. Chen, Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production, Journal of Power Sources, 329 (2016) 484-501.
[22] C. Wei, S. Sun, D. Mandler, X. Wang, S.Z. Qiao, Z.J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chemical Society Reviews, 48 (2019) 2518-2534.
[23] P. Gao, M. Pu, Q. Chen, H. Zhu, Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy, Catalysts, 11 (2021) 1050.
[24] M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang, S. Dai, W. Chen, Z. Zhao, P. Li, H. Fei, Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis, Nature Catalysis, 2 (2019) 495-503.
[25] K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics, ACS Catalysis, 5 (2015) 6021-6031.
[26] S.I.P. Bakovic, P. Acharya, M. Watkins, H. Thornton, S. Hou, L.F.J.J.o.C. Greenlee, Electrochemically active surface area controls HER activity for FexNi100− x films in alkaline electrolyte, 394 (2021) 104-112.
[27] C. Chaiburi, V. Hacker, Catalytic activity of various platinum loading in acid electrolyte at 303 K, Energy Procedia, 138 (2017) 229-234.
[28] C. Wei, Y. Sun, G.n.G. Scherer, A.C. Fisher, M. Sherburne, J.W. Ager, Z.J. Xu, Surface composition dependent ligand effect in tuning the activity of nickel–copper bimetallic electrocatalysts toward hydrogen evolution in alkaline, Journal of the American Chemical Society, 142 (2020) 7765-7775.
[29] I.E. Stephens, A.S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy Environmental Science, 5 (2012) 6744-6762.
[30] C. Zhu, S. Dong, Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction, Nanoscale, 5 (2013) 1753-1767.
[31] J.M. Sieben, M.M.E. Duarte, Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation, International Journal of Hydrogen Energy, 36 (2011) 3313-3321.
[32] J. Liu, B.R. Bunes, L. Zang, C. Wang, Supported single-atom catalysts: synthesis, characterization, properties, and applications, Springer, Online, 2018.
[33] J.A.J.C.c.c. Kruse, Methanol and ethylene glycol intoxication, 28 (2012) 661-711.
[34] B.B. Krishna, B. Biswas, T. Bhaskar, Gasification of lignocellulosic biomass, Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Elsevier2019, pp. 285-300.
[35] H. Wang, Z. Jusys, R.J. Behm, Adsorption and electrooxidation of ethylene glycol and its C2 oxidation products on a carbon-supported Pt catalyst: A quantitative DEMS study, Electrochimica Acta, 54 (2009) 6484-6498.
[36] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: Poisoning effects and product analysis, Electrochimica Acta, 51 (2005) 1085-1090.
[37] K. Miyazaki, T. Matsumiya, T. Abe, H. Kurata, T. Fukutsuka, K. Kojima, Z. Ogumi, Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products, Electrochimica Acta, 56 (2011) 7610-7614.
[38] Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh, Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells, Catalysts, 5 (2015) 310-348.
[39] C. Coutanceau, L. Demarconnay, C. Lamy, J.-M. Léger, Development of electrocatalysts for solid alkaline fuel cell (SAFC), Journal of Power Sources, 156 (2006) 14-19.
[40] L. Liu, X.-X. Lin, S.-Y. Zou, A.-J. Wang, J.-R. Chen, J.-J. Feng, One-pot wet-chemical synthesis of PtPd@ Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation, Electrochimica Acta, 187 (2016) 576-583.
[41] J.A. Farmer, C.T. Campbell, Ceria maintains smaller metal catalyst particles by strong metal-support bonding, Science, 329 (2010) 933-936.
[42] K. Matsuoka, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi, M. Matsuoka, Anodic oxidation of polyhydric alcohols on a Pt electrode in alkaline solution, Fuel cells, 2 (2002) 35-39.
[43] F. Kadirgan, B. Beden, C. Lamy, I. Electrochemistry, Electrocatalytic oxidation of ethylene-glycol: Part II. Behaviour of platinum-ad-atom electrodes in alkaline medium, Journal of Electroanalytical Chemistry, 143 (1983) 135-152.
[44] R. De Lima, V. Paganin, T. Iwasita, W. Vielstich, On the electrocatalysis of ethylene glycol oxidation, Electrochimica Acta, 49 (2003) 85-91.
[45] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Electrocatalytic oxidation of ethylene glycol in alkaline solution, Journal of The Electrochemical Society, 152 (2005) A729.
[46] L. Demarconnay, S. Brimaud, C. Coutanceau, J.-M. Léger, Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts, Journal of Electroanalytical Chemistry, 601 (2007) 169-180.
[47] C. Jin, Y. Song, Z. Chen, A comparative study of the electrocatalytic oxidation of ethylene glycol on PtAu nanocomposite catalysts in alkaline, neutral and acidic media, Electrochimica Acta, 54 (2009) 4136-4140.
[48] D. Bayer, S. Berenger, M. Joos, C. Cremers, J. Tübke, Electrochemical oxidation of C2 alcohols at platinum electrodes in acidic and alkaline environment, International Journal of Hydrogen Energy, 35 (2010) 12660-12667.
[49] L. Xin, Z. Zhang, J. Qi, D. Chadderdon, W. Li, Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors, Applied Catalysis B: Environmental, 125 (2012) 85-94.
[50] J. Corchado-García, C.R. Cabrera, Ethylene glycol oxidation at Pt/TiO2/carbon hybrid catalysts modified glassy carbon electrodes in alkaline media, Electrocatalysis, 5 (2014) 402-407.
[51] V. Marinho, L. Pocrifka, R. Passos, Electrochemical study of PtRh/C and PtRhNi/C electrocatalysts for ethylene glycol oxidation, Journal of Solid State Electrochemistry, 22 (2018) 1517-1524.
[52] F.D. Speck, J.H. Kim, G. Bae, S.H. Joo, K.J. Mayrhofer, C.H. Choi, S. Cherevko, Single-atom catalysts: a perspective toward application in electrochemical energy conversion, JACS Au, 1 (2021) 1086-1100.
[53] X. Zhang, P. Guan, L. Malic, M. Trudeau, F. Rosei, T. Veres, Nanoporous twinned PtPd with highly catalytic activity and stability, Journal of Materials Chemistry A, 3 (2015) 2050-2056.
[54] L. Liu, D.M. Meira, R. Arenal, P. Concepcion, A.V. Puga, A. Corma, Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites?, ACS catalysis, 9 (2019) 10626-10639.
[55] E. Fernandez, L. Liu, M. Boronat, R. Arenal, P. Concepcion, A. Corma, Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters, ACS catalysis, 9 (2019) 11530-11541.
[56] E.T. Baxter, M.-A. Ha, A.C. Cass, A.N. Alexandrova, S.L. Anderson, Ethylene dehydrogenation on Pt4, 7, 8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies, Acs Catalysis, 7 (2017) 3322-3335.
[57] C. Dong, Y. Li, D. Cheng, M. Zhang, J. Liu, Y.-G. Wang, D. Xiao, D. Ma, Supported metal clusters: fabrication and application in heterogeneous catalysis, ACS Catalysis, 10 (2020) 11011-11045.
[58] H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, Bottom-up precise synthesis of stable platinum dimers on graphene, Nature communications, 8 (2017) 1-11.
[59] L. Chen, R.R. Unocic, A.S. Hoffman, J. Hong, A.H. Braga, Z. Bao, S.R. Bare, J. Szanyi, Unlocking the Catalytic Potential of TiO2-Supported Pt Single Atoms for the Reverse Water–Gas Shift Reaction by Altering Their Chemical Environment, JACS Au, 1 (2021) 977-986.
[60] L. Zhang, Y. Ren, W. Liu, A. Wang, T. Zhang, Single-atom catalyst: a rising star for green synthesis of fine chemicals, National Science Review, 5 (2018) 653-672.
[61] C. Bock, H. Halvorsen, B. MacDougall, Catalyst synthesis techniques, PEM Fuel Cell Electrocatalysts and Catalyst Layers, Springer2008, pp. 447-485.
[62] K. Chi, Z. Chen, F. Xiao, W. Guo, W. Xi, J. Liu, H. Yan, Z. Zhang, J. Xiao, J. Liu, Maximizing the utility of single atom electrocatalysts on a 3d graphene nanomesh, Journal of Materials Chemistry A, 7 (2019) 15575-15579.
[63] S. Oh, H. Ha, H. Choi, C. Jo, J. Cho, H. Choi, R. Ryoo, H.Y. Kim, J.Y. Park, Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation, The Journal of Chemical Physics, 151 (2019) 234716.
[64] N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction, Nature communications, 7 (2016) 1-9.
[65] S. Duan, Z. Du, H. Fan, R. Wang, Nanostructure optimization of platinum-based nanomaterials for catalytic applications, Nanomaterials, 8 (2018) 949.
[66] A. Lavacchi, M. Bellini, E. Berretti, Y. Chen, A. Marchionni, H.A. Miller, F. Vizza, Titanium dioxide nanomaterials in electrocatalysis for energy, Current Opinion in Electrochemistry, 28 (2021) 100720.
[67] L. Zhang, K. Doyle-Davis, X. Sun, Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms, Energy Environmental Science, 12 (2019) 492-517.
[68] S. Duan, R. Wang, J. Liu, Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM, Nanotechnology, 29 (2018) 204002.
[69] J. Xu, W. Yang, S. Song, H. Zhang, Ultra‐Small Noble Metal Ceria‐Based Catalytic Materials: From Synthesis to Application, European Journal of Inorganic Chemistry, 2021 (2021) 689-701.
[70] M. Dömök, A. Oszkó, K. Baán, I. Sarusi, A. Erdőhelyi, Reforming of ethanol on Pt/Al2O3-ZrO2 catalyst, Applied Catalysis A: General, 383 (2010) 33-42.
[71] T. Matsumoto, M. Sadakiyo, M.L. Ooi, S. Kitano, T. Yamamoto, S. Matsumura, K. Kato, T. Takeguchi, M. Yamauchi, CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media, Scientific reports, 4 (2014) 1-6.
[72] B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, Strong metal–support interactions between Pt single atoms and TiO2, Angewandte Chemie International Edition, 59 (2020) 11824-11829.
[73] K. Chen, Z. Wang, L. Wang, X. Wu, B. Hu, Z. Liu, M. Wu, Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect, Nano-micro letters, 13 (2021) 1-13.
[74] X. Chen, M. Peng, X. Cai, Y. Chen, Z. Jia, Y. Deng, B. Mei, Z. Jiang, D. Xiao, X. Wen, Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction, Nature communications, 12 (2021) 1-9.
[75] L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chemical reviews, 118 (2018) 4981-5079.
[76] S. Cao, F.F. Tao, Y. Tang, Y. Li, J. Yu, Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts, Chemical Society Reviews, 45 (2016) 4747-4765.
[77] M.-C. Tsai, T.-T. Nguyen, N.G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su, B.-J. Hwang, Interplay between molybdenum dopant and oxygen vacancies in a TiO2 support enhances the oxygen reduction reaction, ACS catalysis, 6 (2016) 6551-6559.
[78] Š. Trafela, J. Zavašnik, S. Šturm, K.Ž. Rožman, Formation of a Ni (OH) 2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media, Electrochimica Acta, 309 (2019) 346-353.
[79] Y. Lum, J.E. Huang, Z. Wang, M. Luo, D.-H. Nam, W.R. Leow, B. Chen, J. Wicks, Y.C. Li, Y. Wang, Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol, Nature Catalysis, 3 (2020) 14-22.
[80] L. An, R. Chen, Mathematical modeling of direct formate fuel cells, Applied Thermal Engineering, 124 (2017) 232-240.
[81] Verified Market Research, Potassium Formate Market Size By Type (Liquid Potassium Formate, Solid Potassium Formate), By Application (Oil Field, De-icing agent, Heat Transfer Fluid, Drilling Fluid, Agricultural Product, Others), By Geographic Scope And Forecast https://www.verifiedmarketresearch.com/product/potassium-formate-market/, 2022 (August 12).
[82] S.-Y. Huang, P. Ganesan, B.N. Popov, Electrocatalytic activity and stability of titania-supported platinum–palladium electrocatalysts for polymer electrolyte membrane fuel cell, ACS catalysis, 2 (2012) 825-831.
[83] N. Chauhan, V. Dameera, A. Chowdhury, V. Juvekar, A. Sarkar, Electrochemical oxidation of ethylene glycol in a channel flow reactor, Catalysis Today, 309 (2018) 126-132.
[84] F. Lü, H. Bao, Y. Mi, Y. Liu, J. Sun, X. Peng, Y. Qiu, L. Zhuo, X. Liu, J. Luo, Electrochemical CO 2 reduction: from nanoclusters to single atom catalysts, Sustainable Energy Fuels, 4 (2020) 1012-1028.
[85] E.C.M. Barbosa, Noble metal nanoparticles supported onto semiconducting oxides as catalysts for reduction reactions, Institute of Chemistry, Universidade de São Paulo, São Paulo, 2019.
[86] J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham, S.R. Challa, G. Qi, S. Oh, M.H. Wiebenga, X.I. Pereira Hernández, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping, Science, 353 (2016) 150-154.
[87] M.D. Argyle, C.H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: a review, Catalysts, 5 (2015) 145-269.
[88] E.C. Barbosa, L.S. Parreira, I.C. de Freitas, L.R. Aveiro, D.C. de Oliveira, M.C. dos Santos, P.H. Camargo, Pt-decorated TiO2 materials supported on carbon: increasing activities and stabilities toward the ORR by tuning the Pt loading, Acs applied energy mater., 2 (2019) 5759-5768.
[89] J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham, S.R. Challa, G. Qi, S. Oh, M.H. Wiebenga, X.I.P. Hernández, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping, Science, 353 (2016) 150-154.
[90] K. Miecznikowski, WO3 decorated carbon nanotube supported PtSn nanoparticles with enhanced activity towards electrochemical oxidation of ethylene glycol in direct alcohol fuel cells, Arabian Journal of Chemistry, 13 (2020) 1020-1031.
[91] A.K. Datye, H. Guo, Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology, Nature Communications, 12 (2021) 1-3.
[92] J.-G. Li, T. Ishigaki, X. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties, The Journal of Physical Chemistry C, 111 (2007) 4969-4976.
[93] M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baâlala, Photocatalytic degradation of 2, 4-D and 2, 4-DP herbicides on Pt/TiO2 nanoparticles, Journal of Saudi Chemical Society, 19 (2015) 485-493.
[94] D.S. García-Zaleta, A. Torres-Huerta, M. Domínguez-Crespo, A. García-Murillo, R. Silva-Rodrigo, R.L. González, Influence of phases content on Pt/TiO2, Pd/TiO2 catalysts for degradation of 4-chlorophenol at room temperature, Journal of Nanomaterials, 2016 (2016).
[95] J. Liu, B.R. Bunes, L. Zang, C. Wang, Supported single-atom catalysts: synthesis, characterization, properties, and applications, Environmental Chemistry Letters, 16 (2018) 477-505.
[96] M.A. Matin, E. Lee, H. Kim, W.-S. Yoon, Y.-U. Kwon, Rational syntheses of core–shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity, Journal of Materials Chemistry A, 3 (2015) 17154-17164.
[97] G.J. Kim, D.W. Kwon, S.C. Hong, Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature, The Journal of Physical Chemistry C, 120 (2016) 17996-18004.
[98] B.-J. Hsieh, M.-C. Tsai, C.-J. Pan, W.-N. Su, J. Rick, H.-L. Chou, J.-F. Lee, B.-J. Hwang, Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts, Electrochimica Acta, 224 (2017) 452-459.
[99] N.G. Akalework, C.-J. Pan, W.-N. Su, J. Rick, M.-C. Tsai, J.-F. Lee, J.-M. Lin, L.-D. Tsai, B.-J. Hwang, Ultrathin TiO 2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, Journal of Materials Chemistry, 22 (2012) 20977-20985.
[100] L. DeRita, J. Resasco, S. Dai, A. Boubnov, H.V. Thang, A.S. Hoffman, I. Ro, G.W. Graham, S.R. Bare, G. Pacchioni, Structural evolution of atomically dispersed Pt catalysts dictates reactivity, Nature materials, 18 (2019) 746-751.
[101] H. Luo, Y. Liu, S.D. Dimitrov, L. Steier, S. Guo, X. Li, J. Feng, F. Xie, Y. Fang, A. Sapelkin, Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation, Journal of Materials Chemistry A, 8 (2020) 14690-14696.
[102] H. Zhang, C. Zhai, H. Gao, N. Fu, M. Zhu, Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic PtNi on 2D molybdenum disulfide/reduced graphene oxide nanosheets, Journal of colloid interface science, 547 (2019) 102-110.
[103] M. Wala, W. Simka, Effect of anode material on electrochemical oxidation of low molecular weight alcohols—A review, Molecules, 26 (2021) 2144.
[104] A.O. Neto, M. Linardi, E.V. Spinacé, Electro-oxidation of ethylene glycol on PtSn/C and PtSnNi/C electrocatalysts, Ionics, 12 (2006) 309-313.
[105] M.-M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, F. Seitz, A. Tarasov, S.V. Levchenko, R. Schlögl, Ni single atom catalysts for CO2 activation, Journal of the American Chemical Society, 141 (2019) 2451-2461.
[106] K. Rintramee, K. Föttinger, G. Rupprechter, J. Wittayakun, Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41, Applied Catalysis B: Environmental, 115 (2012) 225-235.
[107] J. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski, A.J. Therrien, C.T. Williams, E.C.H. Sykes, M. Flytzani-Stephanopoulos, Tackling CO poisoning with single-atom alloy catalysts, Journal of the American Chemical Society, 138 (2016) 6396-6399.
[108] M. Etesami, N. Mohamed, Electrooxidation of ethylene glycol using gold nanoparticles electrodeposited on pencil graphite in alkaline medium, Science China Chemistry, 55 (2012) 247-255.
[109] V.P. Ananikov, Nickel: the “spirited horse” of transition metal catalysis, ACS Publications, 2015, pp. 1964-1971.
[110] L. Li, Y. Wu, J. Lu, C. Nan, Y. Li, Synthesis of Pt–Ni/graphene via in situ reduction and its enhanced catalyst activity for methanol oxidation, Chemical communications, 49 (2013) 7486-7488.
[111] J.E. Sulaiman, S. Zhu, Z. Xing, Q. Chang, M. Shao, Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction, ACS Catalysis, 7 (2017) 5134-5141.
[112] A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis, Nature Reviews Chemistry, 2 (2018) 65-81.
[113] B.-J. Hsieh, M.-C. Tsai, C.-J. Pan, W.-N. Su, J. Rick, J.-F. Lee, Y.-W. Yang, B.-J. Hwang, Platinum loaded on dual-doped TiO 2 as an active and durable oxygen reduction reaction catalyst, Npg Asia Materials, 9 (2017) e403-e403.
[114] E. Lee, J.-H. Jang, M.A. Matin, Y.-U. Kwon, One-step sonochemical syntheses of Ni@ Pt core–shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst, Ultrasonics sonochemistry, 21 (2014) 317-323.
[115] P. Cheng, C. Deng, M. Gu, X. Dai, Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Mater. Chem. Phys., 107 (2008) 77-81.
[116] S. Mamedov, Characterization of TiO 2 nanopowders by Raman spectroscopy, (2020).
[117] K. Miyatake, Y. Shimizu, PtNi alloy nanoparticles prepared by nanocapsule method for ORR catalysts in alkaline media, Bulletin of the Chemical Society of Japan, 91 (2018) 1495-1497.
[118] Y.-Y. Zhou, C.-H. Liu, J. Liu, X.-L. Cai, Y. Lu, H. Zhang, X.-H. Sun, S.-D. Wang, Self-decoration of PtNi alloy nanoparticles on multiwalled carbon nanotubes for highly efficient methanol electro-oxidation, Nano-micro letters, 8 (2016) 371-380.
[119] S.C. Chang, Y. Ho, M.J. Weaver, Applications of real-time FTIR spectroscopy to the elucidation of complex electroorganic pathways: electrooxidation of ethylene glycol on gold, platinum, and nickel in alkaline solution, Journal of the American Chemical Society, 113 (1991) 9506-9513.
[120] C.H. Chen, L.S. Sarma, D.-Y. Wang, F.-J. Lai, C.-C. Al Andra, S.-H. Chang, D.-G. Liu, C.-C. Chen, J.-F. Lee, B.-J. Hwang, Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation, ChemCatChem, 2 (2010) 159-166.
[121] F.-J. Lai, H.-L. Chou, L.S. Sarma, D.-Y. Wang, Y.-C. Lin, J.-F. Lee, B.-J. Hwang, C.-C. Chen, Tunable properties of PtxFe1− x electrocatalysts and their catalytic activity towards the oxygen reduction reaction, Nanoscale, 2 (2010) 573-581.
[122] D.S. García-Zaleta, A. Torres-Huerta, M. Domínguez-Crespo, A. García-Murillo, R. Silva-Rodrigo, R.L. González, Influence of phases content on Pt/TiO2, Pd/TiO2 catalysts for degradation of 4-chlorophenol at room temperature, J. Nanomater., 2016 (2016).
[123] H. Li, L. Zhang, Y. Mao, C. Wen, P. Zhao, A simple electrochemical route to access amorphous Co-Ni hydroxide for non-enzymatic glucose sensing, Nanoscale Research Letters, 14 (2019) 1-12.
[124] L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO 2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells, RSC Adv., 7 (2017) 20084-20092.
[125] Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. Xi, Y. Du, A. Borgna, Crystal phase and architecture engineering of lotus‐thalamus‐shaped Pt‐Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution, Advanced Materials, 30 (2018) 1801741.
[126] B.-J. Hwang, S.S. Loka, C.-H. Chen, G.-R. Wang, D.-G. Liu, J.-F. Lee, Nanostructured Materials for Direct Methanol Fuel Cells, ECS Transactions, 3 (2006) 1289.
[127] H. Shin, W.-G. Jung, D.-H. Kim, J.-S. Jang, Y.H. Kim, W.-T. Koo, J. Bae, C. Park, S.-H. Cho, B.J. Kim, Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping, ACS nano, 14 (2020) 11394-11405.
[128] Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M.F. Chisholm, Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2, Applied Catalysis B: Environmental, 243 (2019) 294-303.
[129] X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, Y. Li, Non-carbon-supported single-atom site catalysts for electrocatalysis, Energy Environmental Science, 14 (2021) 2809-2858.
[130] B.J. Hwang, C.-H. Chen, L.S. Sarma, J.-M. Chen, G.-R. Wang, M.-T. Tang, D.-G. Liu, J.-F. Lee, Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt− Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy, The Journal of Physical Chemistry B, 110 (2006) 6475-6482.
[131] L. Fan, B. Zhang, Z. Qiu, N.A. Dharanipragada, B.J. Timmer, F. Zhang, X. Sheng, T. Liu, Q. Meng, A.K. Inge, Molecular functionalization of NiO nanocatalyst for enhanced water oxidation by electronic structure engineering, ChemSusChem, 13 (2020) 5901-5909.
[132] F.-D. Kong, L.-J. Yang, J. Liu, A.-X. Ling, M.-J. Shi, M. Lv, Z.-Q. Xu, Y.-L. Niu, H.-Y. Wang, Fabrication of Pt/IrO2Nb2O5–rGO electrocatalyst by support improvement for oxygen reduction reaction, Catal. Lett, 149 (2019) 3041-3047.
[133] Q. Lin, Y. Wei, W. Liu, Y. Yu, J. Hu, Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode, international journal of hydrogen energy, 42 (2017) 1403-1411.
[134] L.S. Parreira, J.C.M. da Silva, M. D’Villa-Silva, F.C. Simões, S. Garcia, I. Gaubeur, M.A.L. Cordeiro, E.R. Leite, M.C. dos Santos, PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study, Electrochimica Acta, 96 (2013) 243-252.
[135] S. Duan, Z. Du, H. Fan, R. Wang, Nanostructure optimization of platinum-based nanomaterials for catalytic applications, J. Nanomater., 8 (2018) 949.
[136] V.L.d.S. Marinho, L.A. Pocrifka, R.R. Passos, Ethylene glycol oxidation on ternary PtRhNi/C electrocatalyst with different metal compositions, Matéria, 22 (2017).
[137] M. Wala, W. Simka, Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols—A Review, Molecules, 26 (2021) 2144.

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 2025/08/19 (校外網路)
全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE