簡易檢索 / 詳目顯示

研究生: 李柏青
Po-Ching Li
論文名稱: 應用於ISM頻段之鎖相迴路晶片設計
A Phase-Locked Loop Chip Design for ISM Band Application
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
Ching-Wen Hsue
江正雄
Jen-Shiun Chiang
黃弘一
Hong-Yi Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 113
中文關鍵詞: 鎖相迴路壓控震盪器
外文關鍵詞: Phase-Locked Loop, Voltage-Controlled Oscillator
相關次數: 點閱:471下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎖相迴路的積體電路化在無線通訊應用方面受到相當廣泛的運用,而且產品的小型化、多功能、積體化和高頻化已經是必然的趨勢。本論文的目的在於介紹頻率合成器的理論分析和實際頻率合成器的設計過程。由於常見的整數型頻率合成器有幾個取捨問題,例如頻率解析度對於迴路頻寬、相位雜訊和參考信號突波的取捨。所以本論文重於電路能改善,以期可以在製程的限制下設計出表現出色的電路。
在本篇論文當中,我們使用了台積電0.35um 2P4M製程技術設計了兩個鎖相迴路。第一個鎖相迴路為應用於中繼式無線電系統,且涵蓋了320MHz到1100MHz的相當寬的頻寬。第二個鎖相迴路頻率涵蓋2.1GHz到3.1GHz且應用於ISM頻帶。因為相位雜訊對一個升降頻的穩定頻率來說是非常重要的,如果相位雜訊不合乎規格,容易使後級接收到的頻率被相位雜訊所干擾。相對於其他環形震盪器來說,這裡設計了一個低相位雜訊的環型震盪器,另一方面,由於未使用電感,兩個電路皆可以有效率的節省晶片面積。


The phase lock loop in integrated was a quite widely application in communication, and the product is miniaturization, powerful function, accumulates the body and high frequency has become the inevitable tendency for fast growth wireless communication industry. The purpose of this thesis introduces the analysis frequency synthesizer and the actual design process of the frequency synthesizer. Due to the conventional integer-N frequency synthesizers suffer from fundamental tradeoffs among frequency step size, loop bandwidth, phase noise, and reference spurs. It focus on improve circuit performance, and design a better circuit in process limit.
In this thesis, we propose two phase-locked loops in TSMC 0.35um CMOS 2P4M process technology. The first phase-locked loop is a frequency synthesizer for Trunked Radio System Applications PLL. This proposed synthesizer covers a wide frequency range from 320MHz to 1100MHz. The second phase-locked loop is also made in 0.35um process, and the frequency is from 2.1GHz to 3.1GHz for ISM band. Because of phase noise is very important to communication system, especially in offering a steady frequency of going up and down. If the phase noise does not meet to the specification, it is easy to grade of frequency reached to receive interfere by the phase noise. The ring-oscillator is designed in lower phase noise comparing with conventional ring-oscillator. On the other hand, the two circuits design reduces chip area efficiently as a result of non-inductive.

Chapter 1 Introduction 1.1. Introduction 1.2 Focus and Contribution 1.3 Organization of this thesis Chapter 2 The Basics of PLL-Based Frequency Synthesizers 2.1 Frequency Synthesizer Architecture 2.1.1 Direct digital frequency synthesizer 2.1.2 PLL-based frequency synthesizer 2.1.3 DLL-based frequency synthesizer 2.1.4 Summary and comparison of synthesizers 2.2 Phase-Locked Loop 2.3 General Considerations 2.3.1 Time Jitter 2.3.2 Phase Noise and Spurious Tone 2.3.2 Spurious 2.4 Paper Survey Chapter 3 Analysis of Phase-Locked Loop 18 3.1 Linear Transfer Function for Integer-N PLLs 3.2 Charge Pump PLL Design 3.2.1 Second-Order PLL 3.2.2 Third-Order PLL 3.2.3 Fourth-Order PLL 3.3 Building Blocks of PLL 3.3.1 Voltage-Controlled Oscillator (VCO) 3.3.2 Frequency Divider 3.3.3 Phase Frequency Detector (PFD) 3.3.4 Charge Pump (CP) 3.4 Setting Time 3.4.1 Working Range 3.4.2 Locking time 3.4.3 Tracking and acquisition Chapter 4 A 800MHz Phase-Locked-Loop Chip Design 4.1 Introduction 4.2 Design and Simulation 4.2.1 Voltage-Controlled Oscillator 4.2.2 Frequency Divider 4.2.2.1 Multi-Modulus Divider 4.2.2.2 Divide-by-2 of TSPC Divider 4.2.3 Phase Frequency Detector 4.2.4 Charge Pump 4.2.5 System Simulation 4.3 Implement and Measurement 4.4 Summary Chapter 5 A 2.5GHz Phase-Locked-Loop Chip Design 66 5.1 Introduction 5.2 System Simulation 5.3 Design and Simulation 5.3.1 Voltage-Controlled Oscillator 5.3.2 Frequency Divider 5.3.2.1 Multi-Modulus Divider 5.3.2.1 Divide-by-2 of TSPC Divider 5.3.2.3 Source-Coupled Logic 5.3.3 Phase Frequency Detector 5.3.4 Charge Pump 5.3.5 Single-end OP Amp 5.3.6 System Simulation 5.4 Implement and measurement 5.4 Summary Chapter 6 Conclusions 6.1 Conclusions 6.2 Future Works Reference

[1]Curtis Barrett, “Fractional/Integer-N PLL Basics,” Texas Instruments Technical Brief , August 1999.
[2]K.A. Essenwanger and V.S. Reinhardt, “Sine Output DDSs A Survey of the State of the Art,” IEEE International Frequency Control Symposium, vol. 52, pp. 370–378.1998.
[3]D. Johns and K. Martin, “Analog integrated circuit design,” Canada: Wiley, 1997.
[4]B. De Muer and M. S. J. Steyaert, “A CMOS monolithic delta-sigma controlled fractional-N frequency synthesizer for DCS-1800,” IEEE Journal of Solid-State Circuits, vol. 37, no. 7, pp. 835–844, Jul. 2002.
[5]G. Chien, “Low-noise local oscillator design techniques using a DLL based frequency multiplier for wireless applications,” Ph.D. dissertation, Electronics Research Lab, Univ. California, Berkeley, Jan. 2000.
[6]K. Shu, E. Snachez-Sinencio, CMOS PLL Synthesizers - Analysis and Design, New York: Springer, 2005.
[7]H. de Bellescize, “La réception synchrone”, L’onde électrique, vol. 11, pp. 225-240, May 1932.
[8]Finden, H. J., “The frequency synthesizer.”, Journal IEE, Part III, Vol. 90, pp.165-180, 1943
[9]A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 790–804, Jun. 1999.
[10]B. Razavi, "A study of phase noise in CMOS oscillators", IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 331-343, March 1996.
[11]Yan, W.S.T. and Luong, H.C, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator”, IEEE transactions on circuits and systems- II: analog and digital signal processing, vol. 48, no. 2, February 2001.
[12]Chun-Yueh Huang; I-Jeng Chao and Hung-Yu Wang, “A Phase-Locked Loop For Receivers Of UHF Wireless Microphone,” IEEE Conference On ASIC, 2005. ASICON 2005, vol.1, 24-27 Oct. 2005.
[13]Zhinian Shu, Ka Lok Lee and Bosco H. Leung, “A 2.4-GHz Ring- Oscillator-Based CMOS Frequency Synthesizer With a Fractional Divider Dual-PLL Architecture”, IEEE Trans. On Solid-Stage Circuits. vol.39, No.3, March 2004.
[14]K. T. Kan, C. T. Leung, and H. C. Luong, “A 2-V 1.8-GHz fully integrated CMOS dual-loop frequency synthesizer,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1012–1020, Aug. 2002.
[15]C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in0.4-_m CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 35, pp.788–794, May 2000.
[16]W.-Z. Chen, J.-X. Chang, Y.-J. Hong, M.-T. Wong, and C.-L. Kuo, “A 2-V 2.3/4.6-GHz dual-band CMOS frequency synthesizer,” in IEEE RFIC Symp. Dig., pp. 169–172., June 2002.
[17]Wen-Chi Wu, Chih-Chien Huang, Chih-Hsiung Chang and Nai-Heng Tseng, “Low-Power CMOS PLL For Clock Generator,” IEEE Circuits and Systems,vol.1, pp 636-633, May 2003.
[18]Wei-Hsuan Tu, Jyh-Yih Yeh and Hung-Chieh Tsai; Chorng-Kuang Wang, “A 1.8V 2.5-5.2 Ghz CMOS Dual-Input Two-Stage Ring VCO” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, Aug 2004.
[19]Y. A. Eken and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.39, No. 1, pp. 230-233, January 2004.
[20]D’Azzo, J. J., Houpis, C. H., Linear Control Systems-Analysis and Design Conventional and Modern, 4th edition, 1995 McGraw-Hill, Inc.
[21]F. M. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. Commun. , vol. COM-28, no. 11, pp. 1849–1858, Nov. 1980.
[22]H. Meyr and G. Ascheid, Synchronization in Digital Communications, vol. 1 : Phase-, Frequency Locked Loops and Amplitude Control, Wiley & Sons, New York, USA, 1990.
[23]B. Razavi, RF Microelectronics, Prentice Hall, New York, 1998.
[24]A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 717-724, May 1999
[25]M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1018-1024, July 2001.
[26]Ching-Yuan Yang, Guang-Kaai Dehng, June-Ming Hsu, and Shen-Iuan Liu , “New Dynamic Flip-Flops for High-Speed Dual-Modulus Prescaler,” IEEE Journal of Solid-State Circuits, vol. 33, no. 10, Oct. 1998.
[27]A. Hajimiri, S. Limotyrakis, T. H. Lee, “Phase Noise in Multi-Gigahertz CMOS Ring Oscillators,” Proceedings of the IEEE 1998 Custom Integrated Circuit Conference, pp.49-52, 1998.
[28]S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp.1039-1045, Jul. 2000
[29]J. Kaiser and T. H. Lin, “A 900 MHz 2.5mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–430, Mar. 2001.
[30]Hassan, Mohab Anis and Mohamed Elmasry, “MOS current mode circuits: analysis, design, and variability,” IEEE Transactions on VLSI Systems, vol. 13, Issue 8, Pages: 885 – 898, Aug. 2005.
[31]Howard Cam Luong and Gerry Chi Tak Leung, Low-Voltage CMOS RF Frequency Synthesizers, Cambridge University Press, 2004
[32]J. Yuan, and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE Journal of Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
[33]B. Razavi, Design of Analog CMOS Integrated Circuits. Boston: McGraw-Hill Education, 2000.
[34]W. Rhee, “Design of high performance CMOS charge pumps in phase locked loop,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 1, pp. 545-548, May 1999.
[35]P. Larsson, “A 2~1600-MHz CMOS clock recovery PLL with low Vdd capacity,” IEEE J. Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.
[36]C.S. Vaucher, "An Adaptive PLL Tuning System Architecture Combining High Spectral Purity and Fast Settling Time," IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 490-502, Apr. 2000.
[37]C.S. Vaucher, Architectures for RF Frequency Synthesizers, Ph.D. Thesis, University of Twente, The Netherlands, 2001.
[38]Vˇenceslav F. Kroupa, Phase Lock Loops and Frequency Synthesis, Wiley & Sons, Ltd, England, 2003.
[39]Bram De Muer and Michiel Steyaert, CMOS Fractional-N Synthesizers, Kluwer Academic Publishers, 2003.
[40]R. E. Best, Phase-Locked Loops, Design, Simulation & Applications, McGraw-Hill, 2003.
[41]Y. Savaria, D. Chtchvyrkov, J. Currie, "A Fast CMOS Voltage-Controlled Ring Oscillator," IEEE International Symposium on Circuits and Systems, pp. 359 -362, vol.4, 1994.
[42]H. R. Rategh, H. Samavati, and T. H. Lee, “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 780-787, May 2000.
[43]J. N. Soares and W. A. M. Van Noije, “A 1.6-GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (E-TSPC),” IEEE Journal of Solid-State Circuits, vol. 34, pp. 97–102, Jan. 1999.
[44]B. Chang, J. Park, and W. Kim, “A 1.2 GHz CMOS dual modulus prescaler using new dynamic d-type flip-flops,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 749–752, May 1996.
[45]Shenggao Li, “High performance GHz RF CMOS IC’s for integrated phase-locked loops” Ph. D Dissertation, The Ohio State University, 2000.
[46]Chun-Yueh Huang, I-Jeng Chao and Hung-Yu Wang, “A Phase-Locked Loop for Receivers of UHF Wireless Microphone,” International Conference on ASIC, vol. 1, no. 1611351, pp. 463-466, Oct. 2005.
[47]M. Thamsirianunt and T. Kwasniewski, “A 1.2μm CMOS implementation of a low-power 900-MHz mobile radio frequency synthesizer,” in Proc. IEEE CICC, pp. 383–386, May 1994.
[48]LEE, S.J., KIM, B., and LEE, K.: ‘A fully integrated low noise 1 GHz frequency syiithesizer design for mobile communication application’, IEEE Journal of Solid-State Circuits, pp. 76&765, 1997.
[49]Haiyong Wang, Min Lin, Yongming Li and Hongyi Chen, ‘‘A New CMOS Wideband Pll- Based Frequency Synthesizer,” Institute of Microelectronics, vol.1, 10-11 ,pp. 237 - 240 vol.1, July 2003.
[50]J. Lee and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1137–1145, Aug. 2002.
[51]T. Wu, K. Mayaram, and U.-K. Moon, “An on-chip calibration technique for reducing supply voltage sensitivity in ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 775–783, Apr.2007.
[52]H. R. Rategh, H. Samavati, and T. H. Lee, “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 780-787, May 2000.
[53]J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise voltage-controlled oscillator with prescaler,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1474-1482, Dec. 1995
[54]Z. Shu, K. L. Lee, and B. H. Leung, “A 2.4-GHz Ring-Oscillator-Based CMOS Frequency Synthesizer With a Fractional Divider Dual-PLL Architecture,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 452-462, March 2004.
[55]D. Theil et al., “A fully integrated CMOS frequency synthesizer for bluetooth,” in 2001 IEEE Radio Frequency Integrated Circuits Symposium, pp. 103-106, 2001,.
[56]Saad, A. and Sharaf, Km, “A Fully Integrated 2.4GHz CMOS Frequency Synthesizer Using a Ring-Based VCO with Inductive Peaking,” ISCAS. Digital Object Identifier, vol.27-30 pp.2566 - 2569, May 2007
[57]Adrian Maxim, “A Low Reference Spurs 1–5 GHz 0.13 um CMOS Frequency Synthesizer Using a Fully-Sampled Feed-Forward Loop Filter Architecture,” IEEE Journal of Solid-State Circuits, vol. 42, pp.2503-2514, Nov 2007

無法下載圖示 全文公開日期 2013/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE