簡易檢索 / 詳目顯示

研究生: 俞竣仁
JYUN-REN YU
論文名稱: 拉丁方陣低密度奇偶檢查碼解碼器之實現
Decoder Implementation of Latin Squares LDPC Codes
指導教授: 韓永祥
Yunghsiang S. Han
口試委員: 白宏達
Hung-Ta Pai
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 34
中文關鍵詞: 拉丁方陣低密度奇偶檢查碼
外文關鍵詞: Latin Squares, LDPC Codes
相關次數: 點閱:444下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程的進步以及成本降低,使得記憶體儲存容量大幅上升,但是也造成資料的可靠度降低,因此使用錯誤更正碼來提升可靠度。傳統上運用在NAND型快閃記憶體的錯誤控制碼為使用BCH,然而面對不斷提升的記憶體容量所造成的可靠性降低的問題,BCH碼只能不斷地增加校驗碼的數量來增加資料的可靠性,此法間接降低記憶體所能儲存資料的空間,因此有必要尋找更正能力更強並且更有效率的錯誤更正碼來更正錯誤。而低密度奇偶檢查碼(Low-Density Parity-Check Codes,簡稱LDPC Codes)就是很好的選擇,尤其當使用軟性資訊來解碼時,可得到比BCH碼更佳的效能。
    本論文主要是實現一個以拉丁方陣(Latin Square)所建構成編碼率(Code Rate)為0.89的(9241,8240) LDPC Codes,並採用位元節點為中心之循序排程演算法(Variable-node-centric Sequential Scheduling,簡稱VSS)來降低演算法的硬體複雜度。相較於傳統二階層的Min-Sum硬體架構,使用VSS可以降低線路的連線複雜度,在解碼器中的檢查節點單元與位元節點單元也可以有效的被簡化,並降低硬體成本。最後本論文使用TSMC 180nm製程,並於工作頻率100MHz與10次解碼次數來合成我們所實現的電路,而此電路最高吞吐量為2.02Gbps。


    With the advance of new IC technology, more bits of data can be stored in each flash memory cell to increase capacity of storage; however, it reduces the reliability of flash memory cell. In tradition, BCH code is commonly used in NAND flash memory. BCH can only increase parity bits to correct large number of errors such that storage capacity is reduced. Hence, it is necessary to find a new error correcting code with higher rate and error correcting capability. To solve this problem, LDPC code is a good candidate. When soft information is used to decode stored data, LDPC codes with high code rate even perform better than BCH codes.
    This thesis evaluates the frame error rate and bit error rate of (9241,8240) LDPC code with code rate 0.89. The hardware architecture of decoder of this code is also presented. This LDPC code is constructed based on Latin square. In order to reduce hardware complexity, we adopt variable-node-centric sequential scheduling (VSS) technology. Compared to the conventional Min-Sum decoder, using VSS not only reduces complexity of routing network, but also reduces hardware implementation cost. In the end, we use 180nm CMOS technology to implementation decoder under operating frequency of 100 Mhz. The number of iterations of the decoder is 10 and the maximum throughput can reach 2.02Gbps.

    第一章 簡介....................................................................................................... 1 1.1 錯誤控制碼(Error Control Coding) .................................................. 1 1.2 低密度奇偶檢查碼(Low-Density Parity-Check Codes)................... 2 1.3 快閃記憶體(Flash Memory) ............................................................. 4 1.4 快閃記憶體的可靠性 ....................................................................... 7 1.5 動機 ................................................................................................... 8 第二章 提出硬體架構方法 ............................................................................ 10 2.1 低密度奇偶檢查碼之建構(Construction of LDPC Codes) ............ 10 2.2 解碼演算法(Decoding Algorithm) .................................................. 14 2.2.1 總和-乘積演算法(Sum-Product Algorithm, SPA) ..................... 15 2.2.2 最小值-總和演算法(Min-Sum Algorithm) ................................ 17 2.2.3 位元節點為中心之循序排程演算法(VSS Algorithm) ............. 18 2.2.4 解碼演算法模擬結果與比較..................................................... 21 2.3 低密度奇偶檢查碼解碼器架構(LDPC Decoder Architecture) ..... 23 2.3.1 時序控制(Timing Schedule) ....................................................... 25 2.3.2 位元節點單元(Variable Node Unit, VNU) ................................ 25 2.3.3 檢查節點單元(Check Node Unit, CNU) ................................... 26 2.3.4 繞線網路(Routing Network) ...................................................... 27 第三章 模擬與實現結果 ................................................................................ 29 3.1 實驗環境與軟體模擬 ..................................................................... 29 3.2 硬體實現結果 ................................................................................. 30 第四章 結論與未來目標 ................................................................................ 32 4.1 結論 ................................................................................................. 32 4.2 未來目標 ......................................................................................... 32

    [1] S. Lin and D. J. Costello, Error Control Coding, Prentice-Hall, Second Edition
    (2004)
    [2] Ting-Yuan Kung,”LDPC Decoder Architecture Using Variable-node-centric
    Sequential Scheduling Algorithm,” Master thesis, National Taiwan University of
    Science and Technology, Taipei, Taiwan(2012)
    [3] R. Micheloni, A. Marelli and R. Ravasio, Error Correction Codes for
    Non-Volatile Memories, Springer, Italy (2008)
    [4] Jiadong Wang, Courtade T., Shankar H., and Wesel R.D., “Soft Information for
    LDPC Decoding in Flash: Mutual-Information Optimized Quantization ,” IEEE
    Global Telecommunications Conference (GLOBECOM 2011)
    [5] John P. Uyemura, and John Paul Uyemura, Introduction to VLSI Circuits and
    Systems, Wiley(2001)
    [6] Kin-Chu Ho, “Design and Implementation of a (9153,8256) LDPC Decoder with
    2-bit Soft Input for NAND Flash Memory,” Master thesis, National Chiao Tung
    University, Hsinchu, Taiwan (2010)
    [7] Seongcheol Hong, and Dongkun Shin, “NAND Flash-Based Disk Cache Using
    SLC/MLC Combined Flash Memory,” International Workshop on Storage
    Network Architecture and Parallel I/Os (SNAPI)(2010)
    [8] “Flash 與SSD 產業的挑戰─可靠度與總成本,” DTF 2012 Taiwan 前瞻儲存技
    術與應用論壇, 2012/08/30-DIGITIMES 企劃
    [9] Kai Zhang, Xinming Huang, and Zhongfeng Wang, “High-throughput layered
    decoder implementation for quasi-cyclic LDPC codes,” IEEE Journal on
    Selected Areas in Communications, Volume: 27, Issue: 6(2009)
    [10] Li Zhang, Qin Huang, Shu Lin, Abdel-Ghaffar, K., and Blake, I.F.,” Quasi-Cyclic
    LDPC Codes:An Algebraic Construction, Rank Analysis, and Codes on Latin
    Squares,” IEEE Transactions on Communications, Volume:58, Issue: 11(2010)
    [11] Heller J., and Jacobs I.,” Viterbi Decoding for Satellite and Space
    Communication,” IEEE Transactions on Communication Technology, Volume:
    19, Issue: 5, Part: 1(1971)
    [12] Lan Lan, Lingqi Zeng, Tai Y.Y., Lei Chen, Shu Lin, and Abdel-Ghaffar K.,”
    Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure
    Channels: A Finite Field Approach,” IEEE Transactions on Information Theory,
    Volume:53 , Issue: 7 (2007)
    [13] Xiaofei Huang, “Single-Scan Min-Sum Algorithms for Fast Decoding of LDPC
    Codes,” IEEE Information Theory Workshop(2006)
    [14] Zion Kwok, and Scott Nelson, “LDPC Test Methodology,” Intel (2011)

    QR CODE