簡易檢索 / 詳目顯示

研究生: 張修晢
Hsiu-Che Chang
論文名稱: 使用鎖頻迴路研製24 GHz微流體濃度感測器
Development of 24 GHz Microwave Microfluidic Sensor Using Frequency-Locked Loop for Concentration Detection
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 曾昭雄
Chao-Hsiung Tseng
王蒼容
Chun-Long Wang
黃建彰
Chien-Chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 鎖頻迴路微流體濃度感測器頻率解調器
外文關鍵詞: Frequency-locked loop, microfluidic channel, concentration sensor, frequency demodulator
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用鎖頻迴路(frequency-locked loop, FLL)技術研製一種操作於24 GHz之微流體液體濃度感測器。在鎖頻迴路中,將微流道(microfluidic channel)置於非對稱共面波導共振器(asymmetrical coplanar waveguide resonator, ACPWR)上方,作為液體感測元件,並以酒精水溶液與葡萄糖水溶液作為待測液體,不同濃度液體將改變電場分佈,導致對應的相位偏移,再使鎖頻迴路輸出頻率調變訊號。此頻率調變訊號以相位檢測器(phase detector)所製成之頻率解調器解調,輸出對應之電壓。為最佳化感測特性,本論文針對感測元件結構、迴路濾波器與頻率解調器進行改善,最終感測器具備不同濃度待測液體之優異鑑別能力,且輸出電壓與待測液體濃度呈現線性關係。本論文所提出之24 GHz微流體濃度感測器具有低成本、高靈敏度及體積小之優點,具有極佳的系統晶片實現可行性,可搭配物聯網技術,實現居家應用之即時生醫檢體感測。


    This thesis develops a 24-GHz microfluidic sensor using frequency-locked loop (FLL) technology for liquid concentration detection. In the FLL, a microfluidic channel is arranged over an asymmetrical coplanar waveguide resonator (ACPWR) and utilized as a sensing device. The ethanol-water mixtures and glucose-water solutions are used as the test liquids. The sensing device will detect the changes in the electric-field distribution caused by the liquids with different concentrations, resulting in transmission phase shifts. The FLL generates a frequency-modulated signal according to these phase shifts. This frequency-modulated signal is then demodulated into a corresponding voltage using a frequency demodulator, which is implemented by a phase detector. In addition, the sensing device configuration, loop filter, and frequency demodulator have been modified to optimize the senser’s performance. As a result, the sensor exhibits an excellent ability to distinguish the tested liquids with different concentrations and provides a linear response relating the output voltage to the liquid concentration. The proposed 24-GHz frequency-locked loop microfluidic sensor offers advantages, such as cost effective, high sensitivity, and compact size. It has a great possibility to implement this sensor using the system-on-chip (SoC) technology. As it combined with Internet of Things (IoT) technologies, it may have a capability of real-time biomedical specimen sensing for daily life.

    摘要 I Abstract II 誌謝 III 目錄 IV 第一章 序論 1 1-1 研究動機與目的 1 1-2 文獻回顧及探討 2 1-3 章節說明 7 第二章 液體濃度感測器原理 9 2-1 感測系統運作原理 9 2-2 鎖頻感測迴路原理 10 2-3 頻率解調器原理 12 第三章 24 GHz液體濃度感測器設計與驗證 14 3-1 24 GHz鎖頻感測迴路設計與驗證 14 3-1.1 被動感測元件 14 3-1.2 24 GHz雷達晶片 20 3-1.3 迴路濾波器 22 3-1.4 緩衝放大器 24 3-1.5 鎖頻迴路感測器驗證 25 3-2 頻率解調器電路設計與驗證 30 3-3 24 GHz液體濃度感測器整合與驗證 36 第四章 結論 40 參考文獻 42

    [1] 楊易軒、洪立萍,微流體在醫療檢測領域之發展趨勢https://outlook.stpi.narl.org.tw/index/focus-news?id=4b114100791e3859017
    ac81706197ee3
    [2] A. A. Abduljabar et al., “Novel microwave microfluidic sensor using a microstrip split-ring resonator,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 679-688, Mar. 2014.
    [3] E. L. Chuma et al., “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator.” IEEE Sensors Journal, vol.18, no. 24, pp. 9978-9983, Dec. 2018.
    [4] A. Ebrahimi, J. Scott, K. Ghorbani, “Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269-4277, Oct. 2019.
    [5] G. M. Rocco et al.,” 3-D printed microfluidic sensor in SIW technology for
    liquids’ characterization” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175-1184, Mar. 2020.
    [6] A. A. Helmy et al.,” A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer”, IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2467-2483, Oct. 2012.
    [7] O. Elhadidy et al.,” A CMOS fractional- N PLL-based microwave chemical sensor with 1.5% permittivity accuracy”, IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3402-3416, Aug. 2013.
    [8] A. A. Helmy, K. Entesari,” A 1–8-GHz miniaturized spectroscopy system for permittivity detection and mixture characterization of organic chemicals”, IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4157-4170, Nov. 2012.
    [9] A. A. Helmy et al.,” Complex permittivity detection of organic chemicals and mixtures using a 0.5–3-GHz miniaturized spectroscopy system”, IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4646-4659, Oct. 2013.
    [10] T.-K. Nguyen, C.-H. Tseng,” New radio-frequency liquid permittivity measurement system using filter-based microfluidic sensor” IEEE Sensors Journal, vol.23, no. 12, pp. 12785-12795, Jun. 2023.
    [11] C.-H. Tseng, C.-Y. Yang,” Novel microwave frequency-locked-loop-based sensor for complex permittivity measurement of liquid solutions” , IEEE Trans. Microw. Theory Techn., vol. 70, no. 10, pp. 4556-4565, Aug. 2022.
    [12] K.-C. Peng et al.,” A wireless-frequency-locked-loop-based vital sign sensor with quadrature tracking and phase-noise reduction capability”, IEEE Sensors Journal, vol.21, no. 8, pp. 9706-9715, Apr. 2021.
    [13] ANALOG DEVICES, RF/IF gain and phase detector AD8302 datasheet https://www.analog.com/media/en/technical-documentation/data-sheets/
    ad8302.pdf
    [14] Infineon silicon germanium 24GHz radar transceiver MMIC BGT24LTR11N16 datasheet, https://www.infineon.com/dgdl/Infineon-BGT24LTR11N16-DataSheet-v01_03-EN.pdf?fileId=5546d4625696ed7601569d2ae3a9158a
    [15] ANALOG DEVICES ADISimPLL, https://www.analog.com/en/design-center/adisimpll.html
    [16] Mini Circuits monolithic amplifier ERA-33SM datasheet, https://www.minicircuits.com/pdfs/ERA-33SM+.pdf
    [17] 張雅婷,非接觸式介質量測系統與生理參數感測雷達教學實驗模組設計,國立台灣科技大學電子工程學系碩士論文,民國105年

    無法下載圖示
    全文公開日期 2024/08/09 (校外網路)

    QR CODE