簡易檢索 / 詳目顯示

研究生: 林瑋翔
Wei-Hsiang Lin
論文名稱: 含三氟甲基及非共面結構之新型聚甲亞胺的合成與性質探討
Novel Organosoluble Polyazomethines Containing Trifluoromethyl Biphenyl and Non-coplanar Structures: Synthesis, Thermal, Optical, and Electrochemical Properties
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 李宗銘
Tzong-ming Lee
王英靖
Ing-Jing Wang
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 三氟甲基聚甲亞胺
外文關鍵詞: trifluoromethyl, polyazomethine
相關次數: 點閱:147下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以2-aminobenzotrifluoride和1-bromo-3-nitrobenzene作為起始物,利用Sandmeyer reaction、Ullmann coupling reaction,再進一步還原得到的二醛(6)。以及利用Suzuki coupling reaction後的產物,還原而成的四組二胺(12a~12d)。將二醛單體(6)分別與四組二胺單體(12a~12d),在減壓條件下,於m-cresol中進行溶液聚合,合成新型聚甲亞胺(13a~13d)。這些聚甲亞胺的固有黏度(inherent viscosity)為0.38~0.50 dL/g(0.5 g/dL, NMP, 30℃)。此系列聚甲亞胺在進行溶液聚合後皆可得到均勻的聚甲亞胺溶液,展現良好的溶解度。這些聚甲亞胺在一般常見的有機溶劑當中(如m-cresol、DMF、THF、Chloroform等),展現了良好的溶解度。因為巨大三氟甲基苯的導入,主鏈兩個苯環處於非平面的狀態,高分子鏈無法緊密的堆積,自由體積增大。聚甲亞胺(13a~13d)亦展現出良好的熱穩定性。熱裂解溫度(T5%)由熱重分析儀(TGA)測得皆高於438℃。利用熱示差掃描儀(DSC)測量聚甲亞胺的玻璃轉移溫度(Tg),在350℃的測量範圍皆未觀察到玻璃轉移現象。導入巨大的三氟甲基苯增加了分子主鏈的空間位阻,造成分子鏈柔性降低,亦導致玻璃轉移溫度超過量測範圍。以紫外吸收光譜及螢光放射光譜對此系列聚甲亞胺進行測量(5x10-5 M, THF),並進一步計算其量子效率。聚甲亞胺的吸收波長介於351~358 nm,而量子效率則介在0.3~1.6%。其中,聚甲亞胺(13d) 則是因為放光效率過低,無法計算。根據循環伏安法所測得的CV圖譜,這些聚甲亞胺的起始氧化電位介在1.00~1.10 eV之間,而起始還原電位則是介在-1.45~-1.60 eV之間。掃描過程中,皆顯示為不可逆循環。


    Four new aromatic diamines,2,2’-Bis[o-(trifluoromethyl)phenyl]-4,4’-diaminobiphenyl (12a), 2,2’-Bis[m-(trifluoromethyl)phenyl]-4,4’-diaminobiphenyl (12b), 2,2’-Bis[p-(trifluoromethyl)phenyl]-4,4’-diaminobiphenyl (12c), 2,2’-Bis{[3,5-bis(trifluoromethyl)]phenyl}-4,4’-diaminobiphenyl (12d), were synthesized by using 2-Amino-5-bromobenzotrifluoride as a starting material. Novel polyazomethines 13a~13d were prepared from these diamines with dialdehyde (6) via a room-temperature solution polycondensation in m-cresol under reduced pressure. These polyazomethines, containing twist-biphenyl structure and bulky trifluoromethyl substitutents, were highly soluble in common organic solvents such as dimethylformamide (DMF), tetrahydrofuran (THF), Chloroform and m-cresol at room temperature. These polyazomethines had inherent viscosities from 0.38 to 0.50 dLg-1 in NMP at 30 °C. These polyazomethines had the UV cut-off wavelengths in the range of 351-358 nm. Their quantum efficiency were in range of 0.3~1.6%. These polyazomethines had no glass transition temperatures. They exhibited good thermal stability, without any significant weight loss up to 400 ℃. The decomposition temperatures of these polyazomethines at 5% weight loss under nitrogen were in the ranges of 438-460 °C. These polyazomethines were observed irreversible.

    摘要 I 目錄 II Figure 索引 III Scheme 索引 IV Table 索引 V 第一章 緒論 1 1.1聚甲亞胺 1 1.2文獻回顧 3 1.3研究動機 11 第二章 實驗部分 12 2.1 實驗藥品 12 2.2 實驗儀器 14 2.3 單體合成 15 2.4 高分子合成 22 第三章 結果與討論 23 3.1 單體的合成 23 3.2 高分子的合成 28 3.3 高分子的分子量與溶解度 33 3.4 高分子的熱性質 35 3.5高分子的光學性質 38 3.6高分子的電化學性質 41 第四章 結論 46 參考文獻 47

    1. Burgi, H. B.; Dunitz, J. D. J. Chem. Soc., Chem. Commun. 1969, 472.
    2. Morgan, P. W.; Kwolek S. L.; Pletcher, T. L. Macromolecules 1987, 20, 729.
    3. Saegusa, Y.; Sekiba, K.; Nakamura, S. J. Polym. Sci., Part A: Polym. Chem 1990, 28, 3647.
    4. Ooba, N.; Tomaru, S.; Kurihara, T.; Mori, Y.; Shuto, Y. Kaino. T. Chem. Phys. Lett. 1993, 207, 468.
    5. Tatsuura, S.; Sotoyama, W.; Motoyoshi, K.; Matsuura, A.; Hayano, T.; Yoshimura, T. Appl. Phys. Lett. 1993, 62, 2182.
    6. Li, W.; Wan, M. Solid State Commun.1994, 92, 629.
    7. Destri, S.; Porzio, W.; Dubitsky, Y. Synth. Met. 1995, 75, 25.
    8. D’Alelio, G. F.; Schoenig, R. K. Macromolecules Rev.: Macromolecules Chem. 1969, C3, 105.
    9. Yamamoto, T.; Zhou, Z. H.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B. L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. J. Am. Chem. Soc. 1996, 118, 10389.
    10. Zotti, G.; Randi, A.; Destri, S.; Porzio, W.; Schiavon, G. Chem. Mater. 2002, 14, 4550.
    11. Kimoto, A.; Masachika, K.; Cho, J. -S.; Higuchi, M.; YamamotoK. Chem. Mater. 2004, 16, 5706.
    12. Matsumoto, T.;Yamada, F.;Kurosaki, T. Macromolecules 1997, 30, 3547.
    13. Wang, C.; Shieh, S.; LeGoff, E.; Kanatzidis, M. G. Macromolecules 1996, 29, 3147.
    14. Olinga, T. E.; Destri, S.; Botta, C.; Porzio, W.; Consonni, R. Macromolecules 1998, 31, 1070.
    15. Tsai, F. C.; Chang, C. C.; Liu, C. L.; Chen, W. C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958.
    16. Klein, D. J.; Modarelli, D. A.; Harris, F. W. Macromolecules 2001, 34, 2427.
    17. Steinkopf, W.; Eger, W. Liebigs Ann. Chem. 1938, 533, 270.
    18. Marvel, C. S.; Hill, H. W. J. Am. Chem. Soc. 1950, 72, 4819.
    19. DAlelio, G. F.; Crivello, J. V.; Schoenig, R. K.; Huemmer, T. F. Macromolecules 1967, AI, 1161.
    20. Morgan, P. W.; Kwolek, S. L.; Pletcher, T. C. Macromolecules 1987, 20, 729.
    21. Suematsu, K.; Nakamura, K.; Takeda, J Colloid Polym. Sci. 1983, 261, 493.
    22. Destri, S.; Khotina, I. A.; Porzio, W. Marcomolecules 1998, 31, 1079.
    23. Yang, H. H. Wiley: New York 1989, 641.
    24. Spiliopoulos, I. K.; Mikroyannidis, J. A. Macromolecules 1996, 29, 5313.
    25. Matsumoto, T.; Yamada, F.; Kurosaki, T. Macromolecules 1997, 30, 3547.
    26. Kim, H. C., Kim, J. S., Kim, K. S., Park, H. K., Baek, S., Ree, M. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 825.
    27. Sek D, Iwan A, Jarzabek B, Kaczmarczyk B, Kasperczyk J, Mazurak Z, et al. Macromolecules 2008, 41, 6653.
    28. Tsai, F. C.; Chang, C. C.; Liu, C. L.; Chen, W. C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958.
    29. Buruiana, E. C.; Olaru, M.; Simionescu, B. C. Eur. Polym. J. 2002, 38, 1079.
    30. More, A. S.; Sane, P. S.; Patil, A. S.; Wadgaonkar, P. P. Polym. Degrad. Stab. 2010, 10.1016
    31. Thomas , O.; Inganas, O.; Andersson, M. R. Macromolecules 1998, 31, 2676.
    32. Krebs, F. C.; Jorgensen, M. Synth. Met. 2004, 142, 181.
    33. Catanescu, O.; Grigoras, M.; Colotin, G.; Dobreanu, A.; Hurduc, N. Simionescu, C. I. Eur. Polym. J. 2001, 37, 2213.
    34. Lin, S. H.; Li, F.; Cheng, S. Z. D.; Harris, F. W. Macromolecules 1998, 31, 2080.
    35. Imai, Y.; Malder, N. N.; Kakimoto, M. J. Polym. Sci. Part A: Polym. Chem. 1984, 22, 3771.
    36. Jahnson, E. L. Brit. Patent 756 079, 1956; Chem. Abstr.1957, 51, 6169.
    37. Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J. Science 1995, 267, 1969.
    38. Olinga, T. E.; Destri, S.; Botta, C.; Porzio, W.; Consonni, R. Macromolecules 1998, 31, 1070.
    39. Destri, S.; Khotinal, A.; Porzio, W. Macromolecules 1998, 31, 1079.
    40. Zhao, D.; Moore, J. S. J. Org. Chem. 2002; 67, 3548.
    41. Chen, J. C.; Liu, Y. C.; Ju, J. J.; Chiang, C. J.; Chern, Y. T. Polym. J. 2011, 52, 954.
    42. Lin, G. S.; Liu, Y. H.; Hsieh, Y. L.; Yang, Y. L. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4921.
    43. Li, F.; Ge, J. J.; Honigfort, P. S.; Fang, S.; Chen, J. C.; Harris, F. W.; Cheng, Stephen Z. D. Polym. J. 1999, 40, 4987.

    無法下載圖示 全文公開日期 2016/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE