簡易檢索 / 詳目顯示

研究生: 蔡宗儒
Tzung-Ru Tsai
論文名稱: 單載波區塊傳輸系統下之盲蔽式通道估測與同步機制
Blind channel identification and synchronization for single-carrier block transmission system
指導教授: 曾德峰
Der-Feng Tseng
口試委員: 白宏達
Hung-Ta Pai
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 62
中文關鍵詞: 同步通道估測單載波盲蔽式區塊傳輸
外文關鍵詞: single-carrier, block transmission, Blind, synchronization, channel identification
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對任何通訊系統而言, 提升傳輸率所要面對的
    第一個問題就是非理想通道的干擾。特別是在高
    速、高頻寬的場合, 通道響應往往更加地複雜,干
    擾也更嚴重。為此我們將介紹一種盲蔽式的通道辨
    識方法, 應用於單載波區塊傳輸系統的等化與同步
    機制。此通道辨識法是藉由子空間(sub-space)演算法
    配合特徵值分析來求得通道的響應, 同時也推導出
    其唯一解之充分且必要條件。而依接收訊號的位移
    產生的特徵值變化可以幫助我們判斷訊號是否同
    步、完成同步的工作。


    By advance of communication system, channel response acts a key point for
    increasing the transmission rate. An efficient blind channel identification and
    synchronization method is introduced here for equalization and synchronization in
    single carrier block transmission system by means of subspace algorithm. The channel
    impulse response (CIR) is acquired from Singular Value Decomposition (SVD) of the
    auto-correlation matrix by observing a small amount of data records. We also
    demonstrate the necessary and sufficient condition of subspace algorithm to proof the
    CIR we obtained is correct. The singular-values variation between different delay is
    suitable for evaluating the received signal is synchronized or not.

    摘要........................................................i Abstract....................................................ii 誌謝........................................................iii Figure & Table list.........................................vi I Introduction..............................................1 I.I Motivation............................................1 I.II Chapter brief........................................1 II Systems architecture.....................................3 II.I Architecture of our system...........................4 II.I.I Transmitter......................................5 II.I.II Receiver........................................6 II.II Zero padding system.................................8 III Algorithms analysis.....................................10 III.I Blind channel identification........................10 1. Fractional sampling..................................10 2. Redundancy padding...................................11 III.I.I The channel identification algorithm we used....11 III.I.II Channel identification algorithm in ZP system..26 III.II Blind synchronization..............................27 III.II.I Synchronization algorithm we used..............27 III.II.II Synchronization algorithm in ZP system........36 IV Simulation results.......................................37 IV.I No channel zero locates at the roots of xM 1.......38 IV.II A channel zero locates at the roots of xM 1.......45 IV.III Random channel generation..........................50 IV.IV Order of channel is larger than P...................55 V Conclusion................................................60 Reference...................................................61

    1 E. Moulines, P. Duhamel, J. F. Cardoso, S. Mayrague, “Subspace methods for the
    blind identification of multichannel FIR filters,” IEEE Trans. Signal processing,
    vol. 43, no. 2, Feb. 1995, pp. 516-525

    2 X. Zhuang, Z. Ding, A. L. Swindlehurst, “A statistical subspace method for blind
    channel identification in OFDM communications,” IEEE Int. Conf. Acoustics,
    Speech, and Signal processing, vol. 5, Jun. 2000, pp. 2493-2496

    3 R. Zhang, “Blind OFDM channel estimation through linear precoding: A subspace
    approach”, Asilomar Conf. Signals, Systems and Computers, vol. 1, Nov. 2002, pp.
    631-633

    4 X. Cai, A. N. Akansu, “A subspace method for blind channel identification in
    OFDM systems,” IEEE Int. Conf. Communications, vol. 2, Jun. 2000, pp. 929-933

    5 A. Scaglione, G. B. Giannakis, S. Barbarossa, “Redundant filterbank precoders
    and equalizers Part II: Blind channel estimation, synchronization, and direct
    equalization,” IEEE Trans. Signal processing, vol. 47, no. 7, Jul. 1999, pp.
    2007-2022

    6 J. G, Proakis, Digital communications, 4th ed., McGRAW-HILL, 2001

    7 Digital Video Broadcasting (DVB); Framing structure, channel coding and
    modulation for digital terrestrial television, ETSI standard EN 300 744

    8 H. Holma, A. Toskala, WCDMA FOR UMTS, Radio Access for Third Generation
    Mobile Communications, 3rd ed., John Wiley & Sons, 2004

    9 D. Falconer, S. Lek Ariyavisitakul, A. B. Seeyar, B. Eidson, ”Frequency domain
    equalization for single-carrier broadband wireless system,” IEEE Mag.
    Communications, vol. 40, no. 4, Apr. 2002, pp. 58-66

    10 A. Scaglione, G. B. Giannakis, S. Barbarossa, “Redundant filterbank precoders
    and equalizers Part I: Unification and optimal designs,” IEEE Trans. Signal
    processing, vol. 47, no. 7, Jul. 1999, pp. 1988-2006

    11 S. Ryo, C. Li, “A subspace blind channel estimation method for OFDM system
    without cyclic prefix,” IEEE Trans. Wireless communications, vol. 1, no. 4, Oct.
    2002, pp. 572-579

    12 B. Muquet, M. de Courville, P. Duhamel, “Subsapce-based blind and semi-blind
    channel estimation for OFDM systems,” IEEE Trans. Signal processing, vol. 50,
    no. 7, Jul. 2002, pp. 1699-1712

    13 A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-time Signal Processing, 2nd
    ed., Prentice-Hall, 1999

    14 S. J. Leon, Linear Algebra with Applications, 6th ed., Prentice-Hill, 2002

    15 G. H. Golub, C. F. van Loan, Matrix Computation, 3rd ed., Johns Hopkins, 1996

    16 L. Tong, S. Perreau, “Multichannel blind identification: From subspace to
    maximum likelihood methods,” Proc of the IEEE, vol. 86, no. 10, Oct. 1998, pp.
    1951-1968

    無法下載圖示 全文公開日期 2011/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE