簡易檢索 / 詳目顯示

研究生: 陳琮淯
Chen,TSUNG-YU
論文名稱: 應用線性迴歸於具太陽能發電配電饋線電壓控制
Application of Linear Regression to Voltage Control of Distribution Feeders with Photovoltaic Generation
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 吳啟瑞
Chi-Jui Wu
李尚懿
San -Yi Lee
莊永松
Yung-Sung Chuang
陳坤隆
Kun-Long Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 配電系統智慧變流器虛功率調控電壓控制線性迴歸
外文關鍵詞: distribution systems, smart inverter, reactive power control, voltage control, linear regression
相關次數: 點閱:566下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用線性迴歸於具太陽能發電之高壓配電饋線電壓控制,提出利用系統運轉情境與智慧變流器自主控制經驗值,推估智慧變流器虛功率補償量,達到電壓控制。本研究使用MATLAB來建立二次變電所轄區配電系統與牛頓-拉弗森計算法。探討太陽能發電併網情況時,結合三種不同情境,觀察饋線電壓值,智慧變流器之電壓-虛功率控制情形。另外,探討實際運轉情況下,智慧變流器之電壓虛功率控制情形,分析饋線電壓分布及虛功率補償量。取得饋線電壓變化量及智慧變流器虛功率補償量數據後,設定線性迴歸輸入及輸出,以歸一化數據進行訓練及測試。藉由輸入不同的電壓量與運轉情境,線性迴歸法可以直接推估各併網點智慧變流器應有之虛功率補償量。比較智慧變流器自主調控與線性迴歸控制的差異,提出相關建議,期望能提供實務運轉上之助益。


The purpose of this thesis is to investigate linear regression to voltage control of distribution feeders with photovoltaic generation. In this thesis, the reactive power compensation by a smart inverter of photovoltaic can be evaluated with system operation situation and local control experience of smart inverter. And its objective is to achieve voltage control of feeders. In this study, we firstly established the distribution system and established the Newton-Raphson power flow calculation method program in the MATLAB. And then we discussed photovoltaic generation grid-connected situation. The situation combined three different scenarios. It is to observe the feeder voltage value and the voltage-var function of the smart inverter. In addtion, we considered operation situation. We analyzed the voltage profile and reactive power absorbing amount before and after volt-var control of smart inverters. Afterwards, we obtained feeder voltage variation and reactive power compensation of smart inverters. And then we setuped the input and output of the linear regression and perform data learning with normalized. The linear Regression method can directly estimate reactive power compensation of smart inverters of photovoltaic by inputting different voltages and operation situation. Finally, we compared the difference between smart inverter local control and linear regression control. We also proposed some related suggestion. It is expected to provide advantages in practical operation.

目錄 摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻探討 1.3 研究目標與步驟 1.4 論文架構概述 第二章 配電系統與再生能源發展 2.1 前言 2.2 配電系統架構 2.2.1 架空配電線路 2.2.2 地下配電線路 2.3 負載模型 2.3.1 定阻抗(constant Z)負載模型 2.3.2 定電流(constant I)負載模型 2.3.3 定功率(constant P)負載模型 2.4 再生能源發展 2.5 再生能源併網規範 2.5.1 併聯系統之分類 2.5.2 系統運轉規範 2.6 小結 第三章 太陽能發電相關技術 3.1 前言 3.2 太陽能系統種類 3.2.1 獨立型太陽能系統 3.2.2 市電併聯型太陽能系統 3.2.3 混合型太陽能系統 3.3 太陽能電池 3.3.1 單晶矽太陽能電池 3.3.2 多晶矽太陽能電池 3.3.3 非晶矽太陽能電池 3.4 太陽能變流器 3.4.1 最大功率點追蹤 3.4.2 智慧變流器簡介 3.5 小結 第四章 配電系統饋線電壓控制方法 4.1 前言 4.2 電壓及虛功率之控制原理 4.3 電壓控制設備與動作原理 4.3.1 並聯電容器 4.3.2 有載分接頭切換器 4.3.3 饋線調壓器 4.3.4 智慧變流器控制 4.4 分接頭切換設備電壓調整方法 4.4.1 查表法 4.4.2 電壓準位法 4.4.3 線路壓降補償法 4.5 台電電壓控制模式 4.5.1 虛功率監控模式 4.5.2 電壓監控模式 4.6 台電電力系統電壓控制目標 4.7 小結 第五章 智慧變流器使用自主控制器 5.1 前言 5.2 模擬系統架構及參數設定 5.3 模擬軟體介紹 5.4 模擬方法 5.4.1 牛頓-拉弗森電力潮流方程式撰寫步驟 5.5 併網審查情境智慧變流器自主控制器電壓控制結果 5.6 實際運轉情境智慧變流器自主控制器電壓控制結果 5.7 小結 第六章 智慧變流器使用線性迴歸控制器 6.1 前言 6.2 線性迴歸簡介 6.2.1 簡單線性迴歸 6.2.2 多元線性迴歸 6.3 線性迴歸訓練 6.3.1 歸一化 6.4 實際運轉情境智慧變流器線性迴歸控制器虛功率補償結果 6.5 小結 第七章 結論及未來研究方向 7.1 結論 7.2 未來研究方向 參考文獻 附錄

[1]經濟部,能源發展綱領(核定本),2017。
[2]經濟部能源局,太陽光電 2 年推動計畫(修正版),2017。
[3]經濟部能源局,再生能源裝(設)置容量,2022。
[4]周昱緯,一次變電所電壓及虛功率控制,碩士學位論文,國立臺灣科技大學,台北市,2014。
[5]柯喬元,一次變電所電壓及虛功率控制靈敏度分析,碩士學位論文,國立臺灣科技大學,台北市,2010。
[6]台灣電力股份有限公司,配電技術手冊(四)地下配電線路設計,1996。
[7]胡竣翔,配電饋線電壓控制方法及改善策略,碩士學位論文,國立臺灣科技大學,台北市,2015。
[8]林勉海,具太陽能發電之二次變電所主變壓器轄區電壓控制,碩士學位論文,國立臺灣科技大學,台北市,2017。
[9]趙天新,智慧變流器應用於具太陽能發電之配電饋線電壓控制,碩士學位論文,國立臺灣科技大學,台北市,2019。
[10]吳宸禾,利用太陽能發電之智慧變流器於配電饋線電壓控制,碩士學位論文,國立臺灣科技大學,台北市,2020。
[11]蔡佳翰,應用倒傳遞類神經網路於具太陽能發電之配電饋線電壓控制,碩士學位論文,國立臺灣科技大學,台北市,2021。
[12]H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, “Three-phase AC/DC power-flow for balanced/unbalanced microgrids including wind/solar, droop-controlled and electronically-coupled distributed energy resources using radial basis function neural networks,” IET Power Electronics, vol. 10, no. 3, pp. 313-328, Mar.2017.
[13]K. Chen, X. H. Wang, D. M. Alghazzawi, and Y. F. Wang, “Visualized calculation of regional power grid power data based on multiple linear regression equation,” Applied Mathematics and Nonlinear Sciences, pp. 10.
[14]M. Surprenant, I. Hiskens, and G. Venkataramanan, “Phase locked loop control of inverters in a microgrid,” 2011 IEEE Energy Conversion Congress and Exposition, pp. 667-672, 2011.
[15]D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, and Y. S. Xue, “Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 310-321, Jan.2015.
[16]B. I. Rani, C. K. Aravind, G. S. Ilango, and C. Nagamani, “A three phase PLL with a dynamic feed forward frequency estimator for synchronization of grid connected converters under wide frequency variations,” International Journal of Electrical Power & Energy Systems, vol. 41, no. 1, pp. 63-70, Oct.2012.
[17]D. Jovcic, “Phase locked loop system for FACTS,” Ieee Transactions on Power Systems, vol. 18, no. 3, pp. 1116-1124, Aug.2003.
[18]江龍生,考慮風力發電機併網之配電饋線電壓控制研究,碩士學位論文,國立臺灣科技大學,台北市,2005。
[19]郭芳楠,分散型電源併入配電系統對饋線電壓變動之研究,碩士學位論文,國立臺北科技大學,台北市,2005。
[20]崔文吉,配電系統中考慮分散式電源併聯的電壓控制策略,碩士學位論文,國立中山大學,高雄市,2007。
[21]蘇品文,具太陽能發電之配電饋線電壓控制,碩士學位論文,國立臺灣科技大學,台北市,2016。
[22]C. Long, and L. F. Ochoa, “Voltage Control of PV-Rich LV Networks: OLTC-Fitted Transformer and Capacitor Banks,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4016-4025, Sep.2016.
[23]A. L. M. Mufaris, J. Baba, S. Yoshizawa, and Y. Hayashi, “Determination of dynamic line drop compensation parameters of voltage regulators for voltage rise mitigation,” 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, pp. 319-325,16-18 June 2015.
[24]S. Kawano, S. Yoshizawa, Y. Fujimoto, and Y. Hayashi, “The basic study for development of a method for determining the LDC parameters of LRT and SVR using PV output forecasting,” 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, pp. 1-5,18-20 Feb 2015.
[25]S. Kawano, S. Yoshizawa, and Y. Hayashi, “Method for enumerating feasible LDC parameters for OLTC and SVR in distribution networks,” 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Prague, Czech Republic, pp. 1-5,27-29 June 2016.
[26]B. Seal, and B. Ealy, “Common functions for smart inverters 4th edition,” Tech. Report, Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2016.
[27]M. J. Reno, R. J. Broderick, and S. Grijalva, “Smart inverter capabilities for mitigating over-voltage on distribution systems with high penetrations of PV,” 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, pp. 3153-3158,16-21 June 2013.
[28]J. Smith, W. Sunderman, R. Dugan, and B. Seal, “Smart inverter volt/var control functions for high penetration of PV on distribution systems,” 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, pp. 1-6,2011.
[29]A. M. Howlader, S. Sadoyama, L. R. Roose, and S. Sepasi, “Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study,” Renewable Energy, vol. 127, pp. 145-157, 2018.
[30]P. M. Carvalho, P. F. Correia, and L. A. Ferreira, “Distributed reactive power generation control for voltage rise mitigation in distribution networks,” IEEE transactions on Power Systems, vol. 23, no. 2, pp. 766-772, 2008.
[31]S. Abate, T. McDermott, M. Rylander, and J. Smith, “Smart inverter settings for improving distribution feeder performance,” 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, pp. 1-5,2015.
[32]D. T. Rizy, H. Li, F. Li, Y. Xu, S. Adhikari, and P. Irminger, “Impacts of varying penetration of distributed resources with & without volt/var control: case study of varying load types,” 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, pp. 1-7,2011.
[33]A. T. Procopiou, and L. F. Ochoa, “On the limitations of volt-var control in PV-rich residential LV networks: A UK case study,” 2019 IEEE Milan PowerTech, Milan, Italy, pp. 1-6,2019.
[34]IEA, “Renewables 2021 Analysis and forecast to 2026,” 2021.
[35]H. E. Murdock, D. Gibb, T. Andre, J. L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, and C. Hareesh Kumar, “Renewables 2021-Global status report,” Ren21,France, pp. 118, 2021.
[36]台灣電力股份有限公司,再生能源發電概況,2022。
[37]台灣電力股份有限公司,再生能源發電效益,2021。
[38]經濟部能源局,再生能源發展條例,2019。
[39]經濟部能源局,109年能源供給概況,2022。
[40]台灣電力股份有限公司,台灣電力股份有限公司再生能源發電系統併聯技術要點,2018。
[41]環境與發展基金會,太陽能光電系統介紹,2016。
[42]振芫禎,太陽能最大功率追蹤器之研究,碩士學位論文,大同大學,台北市,2008。
[43]蘇勝一,提高分散式電源併聯容量之饋線開關及電壓整合控制,碩士學位論文,國立中山大學,高雄市,2009。
[44]W. H. Kersting, "Distribution system modeling and analysis," Electric Power Generation, Transmission, and Distribution: The Electric Power Engineering Handbook, pp. 26-1-26-58: CRC press, 2018.
[45]E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and U. Borup, “Evaluation of the voltage support strategies for the low voltage grid connected PV generators,” 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, pp. 710-717.
[46]Y. Xue, and J. M. Guerrero, “Smart inverters for utility and industry applications,” Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, pp. 1-8, 2015.
[47]台灣電力股份有限公司,SCADA區域調度運轉技術文件,2005。
[48]台灣電力股份有限公司,電力系統運轉操作章則彙編,2012。
[49]台灣電力股份有限公司,輸電系統規劃準則,2019。
[50]R. Lu. "Preprocessing Data : 數據特徵標準化和歸一化," https://medium.com/ai反斗城/preprocessing-data-數據特徵標準化和歸一化-9bd3e5a8f2fc.

無法下載圖示 全文公開日期 2024/07/19 (校內網路)
全文公開日期 2024/07/19 (校外網路)
全文公開日期 2024/07/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE