簡易檢索 / 詳目顯示

研究生: 丁偉庭
Wei-Ting Ting
論文名稱: 利用分子印跡技術製備高靈敏電化學蛋白質感測器應用於人體健康監測
Development of Highly Sensitive Electrochemical Protein Sensors Utilizing Molecularly Imprinted Polymers (MIP) for Applications in Human Health Monitoring
指導教授: 王孟菊
Meng-Jiy Wang
Matiar Howlader
Matiar Howlader
口試委員: 王孟菊
Meng-Jiy Wang
Matiar Howlader
Matiar Howlader
陳克紹
Ko-Shao Chen
王勝仕
Steven S.-S. Wang
許梅娟
Mei-Jywan Syu
陳良益
Liang-Yih Chen
林文賓
Wen-Pin Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 136
中文關鍵詞: 電化學感測器分子印跡聚合物蛋白質感測聚苯胺聚鄰苯二胺牛血清白蛋白白血球介素-6
外文關鍵詞: Electrochemical sensor, Molecularly imprinted polymer (MIP), Protein detection, Polyaniline (PANI), Poly(o-phenylenediamine) (P(o-PD)), Bovine serum albumin (BSA), Interleukin-6 (IL-6)
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

蛋白質檢測對於監測健康並診斷免疫反應、心血管疾病、阿茲海默症、糖尿病和癌症等疾病至關重要。然而,傳統的檢測方法存在著低靈敏度、複雜的樣品準備、和冗長地時間分析限制等。近年來,電化學感測技術嶄露頭角,特別是分子印跡技術的無標記電化學生物感測器,其具有高靈敏度、快速檢測和實時監測等優勢。然而,分子印跡技術本身仍存在一些限制和挑戰,例如優化分子印跡聚合物 (MIP) 的合成條件、提高模板分子的印跡效率、降低檢測環境的外在干擾程度、及減少聚合物基質本身存在的非特異性結合等問題。這些因素可能會影響分子印跡感測器對目標物檢測的靈敏度和再現性。
本研究旨在利用分子印跡技術,開發具高靈敏度的蛋白質電化學感測平台,用於診斷和監測人體中的蛋白質濃度。本研究成功製備了兩種感測器:一種是基於聚苯胺 (PANI) 的感測器,用於檢測牛血清白蛋白 (BSA);另一種是基於聚鄰苯二胺 (P(o-PD)) 的感測器,用於檢測白血球介素-6 (IL-6)。這兩種開發的感測器成本效益高,製備過程相對簡單。研究結果顯示,PANI 印跡感測器對於 BSA 的檢測具有卓越的靈敏度和可靠性,甚至在極低濃度水平下仍能檢測到 BSA。在最佳優化的條件下,該感測器對於 BSA 在磷酸緩衝鹽溶液 (PBS)、牛奶、和人血清等環境中的樣品測量極限,分別為 2.5 pg/ml、2.7 pg/ml 和 3.6 pg/ml。此外,研究發現,在使用醋酸 (AcOH) 與十二烷基硫酸鈉 (SDS) 清洗 PANI 印跡感測器的過程中,除了能夠去除 BSA 模板分子以產生印跡空腔外,SDS 分子還會在 BSA 的印跡空腔上形成刷狀薄膜,從而協同地增強對 BSA 的再結合能力。
另一方面,本研究製備的 P(o-PD) 印跡感測器對於 IL-6 的檢測也表現出良好的性能。該感測器對 PBS 和人類血清中的 IL-6 有良好的響應,檢測極限分別為 1.5 pg/ml 和 2.4 pg/ml。此外,本研究對 P(o-PD) 印跡電極進行了表面濕潤性、表面形態、表面粗糙度、化學結構和機械性能等物理化學分析。這些分析有效地證明了成功將 IL-6 模板嵌入P(o-PD) 中。綜上所述,本研究開發的 PANI 和 P(o-PD) 印跡感測器具有應用於檢測人體免疫疾病並監測患者健康的潛力。未來期望將研究方向發展為實踐定點照護檢驗 (point-of-care testing),並進一步在實際臨床應用中獲得驗證和實踐。目標為將本研究的分子印跡感測器應用於商業化的健康監測和蛋白質檢測。


Protein detection is essential for monitoring health and diagnosing diseases, such as immune reactions, cardiovascular diseases, Alzheimer's, diabetes, and cancers. Traditional methods have limitations, including low sensitivity, complex sample preparation, and long analysis times. Electrochemical sensing technology, particularly label-free biosensors using molecular imprinting, offers advantages like high sensitivity, rapid detection, and real-time monitoring. However, there are challenges in optimizing the synthesis conditions of molecularly imprinted polymers (MIP), improving template molecule imprinting efficiency, reducing interference, and minimizing non-specific binding. These factors can affect the accuracy and reproducibility of molecularly imprinted sensors in target detection.
This study aims to develop a protein electrochemical sensing platform using MIP to detect protein concentration in human body. Two types of sensors were successfully prepared: one based on polyaniline (PANI) for detecting bovine serum albumin (BSA) and the other based on poly(o-phenylenediamine) (P(o-PD)) for detecting human interleukin-6 (IL-6). The PANI-based MIP sensor showed excellent sensitivity and reliability in detecting BSA, even at picogram levels. Under optimal conditions, the sensor achieved detection limits for BSA in phosphate-buffered saline (PBS), milk, and human serum at 2.5 pg/ml, 2.7 pg/ml, and 3.6 pg/ml, respectively. During the template molecule removal process using sodium dodecyl sulfate (SDS) in the PANI imprinting sensor, SDS not only removed the template protein molecules to create imprinted cavities but also formed a brush-like film on these cavities, which enhanced the re-binding capability for BSA.
On the other hand, the P(o-PD)-based MIP sensor developed in this study also exhibited a good performance in detecting IL-6. The sensor exhibited a good response to the IL-6 target in PBS and human serum, with a detection limit as low as 1.5 pg/ml and 2.4 pg/ml, respectively. Additionally, physico-chemical analyses of the P(o-PD) imprinting electrodes were performed, encompassing surface wettability, morphology, roughness, chemical structure, and mechanical properties. These analyses effectively demonstrated the successful embedding of the IL-6 template into the P(o-PD) matrix.
In summary, the developed PANI and P(o-PD) MIP sensors in this study have the potential for applications in detecting human immune diseases and monitoring patient health. It is anticipated that this research direction will pave the way for practical-clinical point-of-care testing, leading to the validation and implementation of the diagnostic tool in real-world clinical applications. Ultimately, this could contribute to the commercial development of health monitoring and protein detection technologies.

摘要 I Abstract III Acknowledgment V Content VII List of Figures IX List of Tables XVII Abbreviation 1 Chapter 1 Introduction 2 1.1 Background of research 2 1.2 Challenges of MIP technology 4 1.3 Goals of research 4 1.4 Thesis overview 5 Chapter 2 Literature Review 7 2.1 Protein biomarkers 7 2.2 Protein detection methods 8 2.3 Electrochemical sensing platform 14 2.4 Molecular imprinting technique 17 2.5 MIP-based electrochemical sensor 25 2.6 Challenges of MIP-based electrochemical sensor 27 Chapter 3 Experimental 29 3.1 Chemical and instrument 29 3.2 Preparation procedure of MIP-based electrochemical sensor 31 3.3 Surface characterization 34 3.4 Electrochemical measurements 43 Chapter 4 Results and Discussion 45 4.1 MIP-based BSA electrochemical sensor 45 4.1.1 Optimization of BSA template anchor platform 45 4.1.2 Effect of electro-imprinting cycles of PANI on imprinting BSA template 49 4.1.3 Effects of washing time on the removal of BSA template 51 4.1.4 Performance evaluation of MIP-based BSA sensors 53 4.1.5 Surface properties between MIP and NIP sensors 56 4.1.6 Application of MIP-based BSA sensors 62 4.2 MIP-based IL-6 electrochemical sensor 67 4.2.1 Optimization of IL-6 template anchor platform 67 4.2.2 Surface properties of each modified layer on IL-6 anchor platform 75 4.2.3 Effect of electro-imprinting cycles of P(o-PD) film 83 4.2.4 Surface characterization of synthesis of MIP and NIP sensors 85 4.2.5 Effects of washing time on the removal of IL-6 template 93 4.2.6 Performance evaluation of MIP-based IL-6 sensors 94 4.2.7 Application of MIP-based IL-6 sensors 99 Chapter 5 Conclusion 102 Chapter 6 Future perspective 105 Appendix: Q&A 107 Reference 126

1. J. R. Hoffman, and M. J. Falvo, Protein–which is best?, Journal of Sports Science & Medicine, 2004, 3 (3), p. 118.
2. M. Mendall, P. Patel, L. Ballam, D. Strachan, and T. Northfield, C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study, British Medical Journal, 1996, 312 (7038), p. 1061-1065.
3. J. P. Taylor, J. Hardy, and K. H. Fischbeck, Toxic proteins in neurodegenerative disease, Science, 2002, 296 (5575), p. 1991-1995.
4. A. Jahanban-Esfahlan, A. Ostadrahimi, R. Jahanban-Esfahlan, L. Roufegarinejad, M. Tabibiazar, and R. Amarowicz, Recent developments in the detection of bovine serum albumin, International journal of biological macromolecules, 2019, 138, p. 602-617.
5. O. J. McElvaney, G. F. Curley, S. Rose-John, and N. G. McElvaney, Interleukin-6: obstacles to targeting a complex cytokine in critical illness, The Lancet Respiratory Medicine, 2021, 9 (6), p. 643-654.
6. M. Yoshida, N. Hatano, S. Nishiumi, Y. Irino, Y. Izumi, T. Takenawa, and T. Azuma, Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry, Journal of Gastroenterology, 2012, 47, p. 9-20.
7. M. T. Hearn, High–performance liquid chromatography and its application to protein chemistry, Advances in Chromatography, 2021, p. 1-82.
8. J. V. Jorrin-Novo, S. Komatsu, R. Sanchez-Lucas, and L. E. R. de Francisco, Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics!, Journal of Proteomics, 2019, 198, p. 1-10.
9. C. V. Sapan, R. L. Lundblad, and N. C. Price, Colorimetric protein assay techniques, Biotechnology and Applied Biochemistry, 1999, 29 (2), p. 99-108.
10. J. E. Butler, Enzyme-linked immunosorbent assay, Journal of Immunoassay, 2000, 21 (2-3), p. 165-209.
11. A. Singh, A. Sharma, A. Ahmed, A. K. Sundramoorthy, H. Furukawa, S. Arya, and A. Khosla, Recent advances in electrochemical biosensors: Applications, challenges, and future scope, Biosensors, 2021, 11 (9), p. 336.
12. A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, Immunosensors: electrochemical sensing and other engineering approaches, Biosensors and Bioelectronics, 1998, 13 (1), p. 113-131.
13. M. d. Vestergaard, K. Kerman, and E. Tamiya, An overview of label-free electrochemical protein sensors, Sensors, 2007, 7 (12), p. 3442-3458.
14. F. Cui, Z. Zhou, and H. S. Zhou, Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases, Sensors, 2020, 20 (4), p. 996.
15. E. Mazzotta, T. Di Giulio, and C. Malitesta, Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities, Analytical and Bioanalytical Chemistry, 2022, 414 (18), p. 5165-5200.
16. P. E. Korenblat, R. M. Rothberg, P. Minden, and R. S. Farr, Immune responses of human adults after oral and parenteral exposure to bovine serum albumin, Journal of Allergy, 1968, 41 (4), p. 226-235.
17. D. R. Persaud, and A. Barranco-Mendoza, Bovine serum albumin and insulin-dependent diabetes mellitus: is cow's milk still a possible toxicological causative agent of diabetes?, Food and Chemical Toxicology, 2004, 42 (5), p. 707-714.
18. H. Debiec, F. Lefeu, M. J. Kemper, P. Niaudet, G. Deschênes, G. Remuzzi, T. Ulinski, and P. Ronco, Early-childhood membranous nephropathy due to cationic bovine serum albumin, New England Journal of Medicine, 2011, 364 (22), p. 2101-2110.
19. T. Mogues, J. Li, J. Coburn, and D. J. Kuter, IgG antibodies against bovine serum albumin in humans—their prevalence and response to exposure to bovine serum albumin, Journal of Immunological Methods, 2005, 300 (1-2), p. 1-11.
20. J. W. Loughney, C. Lancaster, S. Ha, and R. R. Rustandi, Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology, Analytical Biochemistry, 2014, 461, p. 49-56.
21. L. E. McCrae, W.-T. Ting, and M. M. Howlader, Advancing electrochemical biosensors for interleukin-6 detection, Biosensors and Bioelectronics: X, 2022, p. 100288.
22. P. Du, J. Geng, F. Wang, X. Chen, Z. Huang, and Y. Wang, Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome, International journal of medical sciences, 2021, 18 (6), p. 1356.
23. P. M. Ridker, and M. Rane, Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease, Circulation Research, 2021, 128 (11), p. 1728-1746.
24. M. Rincon, and C. G. Irvin, Role of IL-6 in asthma and other inflammatory pulmonary diseases, International journal of biological sciences, 2012, 8 (9), p. 1281.
25. A. Ogata, Y. Kato, S. Higa, and K. Yoshizaki, IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review, Modern rheumatology, 2019, 29 (2), p. 258-267.
26. M. Y. Taher, D. M. Davies, and J. Maher, The role of the interleukin (IL)-6/IL-6 receptor axis in cancer, Biochemical Society Transactions, 2018, 46 (6), p. 1449-1462.
27. H. Kataoka, S. Matsumura, S. Yamamoto, and M. Makita, Capillary gas chromatographic analysis of protein and nonprotein amino acids in biological samples, Amino Acid Analysis Protocols, Totowa, NJ: Humana Press, 2000, C. Cooper, N. Packer and K. Williams, eds., p. 101-122.
28. L. Zolla, A. Timperio, m. G. Testi, M. Bianchetti, R. Bassi, F. Manera, and D. Corradini, Isolation and characterization of chloroplast Photosystem II antenna of spinach by reversed-phase liquid chromatography, Photosynthesis Research, 1999, 61, p. 281-290.
29. H. Murakami, V. Borde, A. Nicolas, and S. Keeney, Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions, Methods in Molecular Biology, 2009, 557, p. 117-42.
30. M. H. Simonian, and J. A. Smith, Spectrophotometric and colorimetric determination of protein concentration, Current protocols in molecular biology, 2006, 76 (1), p. 10.1. 1-10.1 A. 9.
31. M. Palmieri, M. Vagnini, L. Pitzurra, P. Rocchi, B. Brunetti, A. Sgamellotti, and L. Cartechini, Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA), Analytical and Bioanalytical Chemistry, 2011, 399, p. 3011-3023.
32. P. B. Lillehoj, M.-C. Huang, N. Truong, and C.-M. Ho, Rapid electrochemical detection on a mobile phone, Lab on a Chip, 2013, 13 (15), p. 2950-2955.
33. E. Brunelle, A. M. Le, C. Huynh, K. Wingfield, L. Halámková, J. Agudelo, and J. Halámek, Coomassie Brilliant blue G-250 dye: An application for forensic fingerprint analysis, Analytical Chemistry, 2017, 89 (7), p. 4314-4319.
34. L. O. Anagu, and N. E. Andoh, Chapter 4 - Vaccine development: from the laboratory to the field, Vaccinology and Methods in Vaccine Research: Academic Press, 2022, R. Ashfield, A. N. Oli, C. Esimone and L. Anagu, eds., p. 95-131.
35. A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, and M. Aldissi, Challenges of electrochemical impedance spectroscopy in protein biosensing, Analytical chemistry, 2009, 81 (10), p. 3944-3949.
36. J. Hirst, and F. A. Armstrong, Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange, Analytical Chemistry, 1998, 70 (23), p. 5062-5071.
37. Y. Dai, A. Molazemhosseini, and C. C. Liu, A single-use, in vitro biosensor for the detection of T-tau protein, a biomarker of neuro-degenerative disorders, in PBS and human serum using differential pulse voltammetry (DPV), Biosensors, 2017, 7 (1), p. 10.
38. A. Rhouati, G. Catanante, G. Nunes, A. Hayat, and J.-L. Marty, Label-free aptasensors for the detection of mycotoxins, Sensors, 2016, 16 (12), p. 2178.
39. C. Kang, J. Kang, N.-S. Lee, Y. H. Yoon, and H. Yang, DT-diaphorase as a bifunctional enzyme label that allows rapid enzymatic amplification and electrochemical redox cycling, Analytical chemistry, 2017, 89 (15), p. 7974-7980.
40. J. Huang, F. Wei, Y. Cui, L. Hou, and T. Lin, Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection, RSC Advances, 2022, 12 (48), p. 31369-31379.
41. T. Li, and M. Yang, Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, Sensors and Actuators B: Chemical, 2011, 158 (1), p. 361-365.
42. M. Medina-Sánchez, S. Miserere, E. Morales-Narváez, and A. Merkoçi, On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels, Biosensors and Bioelectronics, 2014, 54, p. 279-284.
43. A. Koyappayil, and M.-H. Lee, Ultrasensitive materials for electrochemical biosensor labels, Sensors, 2020, 21 (1), p. 89.
44. S. Jampasa, P. Lae-Ngee, K. Patarakul, N. Ngamrojanavanich, O. Chailapakul, and N. Rodthongkum, Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis, Biosensors and Bioelectronics, 2019, 142, p. 111539.
45. P. Skládal, Advances in electrochemical immunosensors, Electroanalysis, 1997, 9 (10), p. 737-745.
46. S. Hassanpour, and M. Hasanzadeh, Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC), Microchemical Journal, 2021, 168, p. 106424.
47. Y. Wei, Q. Zeng, Q. Hu, M. Wang, J. Tao, and L. Wang, Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel, Biosensors and Bioelectronics, 2018, 99, p. 136-141.
48. Y. Wang, Y. Zhou, J. Sokolov, B. Rigas, K. Levon, and M. Rafailovich, A potentiometric protein sensor built with surface molecular imprinting method, Biosensors and Bioelectronics, 2008, 24 (1), p. 162-166.
49. W. Zhao, B. Li, S. Xu, X. Huang, J. Luo, Y. Zhu, and X. Liu, Electrochemical protein recognition based on macromolecular self-assembly of molecularly imprinted polymer: a new strategy to mimic antibody for label-free biosensing, Journal of Materials Chemistry B, 2019, 7 (14), p. 2311-2319.
50. L. M. Goncalves, Electropolymerized molecularly imprinted polymers: Perceptions based on recent literature for soon-to-be world-class scientists, Current Opinion in Electrochemistry, 2021, 25, p. 100640.
51. Y. Fuchs, O. Soppera, and K. Haupt, Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review, Analytica Chimica Acta, 2012, 717, p. 7-20.
52. D. Duan, H. Yang, Y. Ding, D. Ye, L. Li, and G. Ma, Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@ Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin, Electrochimica Acta, 2018, 261, p. 160-166.
53. Y. Wang, M. Han, G. Liu, X. Hou, Y. Huang, K. Wu, and C. Li, Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin, Biosensors and Bioelectronics, 2015, 74, p. 792-798.
54. B. B. Prasad, A. Prasad, and M. P. Tiwari, Multiwalled carbon nanotubes-ceramic electrode modified with substrate-selective imprinted polymer for ultra-trace detection of bovine serum albumin, Biosensors and Bioelectronics, 2013, 39 (1), p. 236-243.
55. C. Yang, X.-F. Ji, W.-Q. Cao, J. Wang, Q. Zhang, T.-L. Zhong, and Y. Wang, Molecularly imprinted polymer based sensor directly responsive to attomole bovine serum albumin, Talanta, 2019, 196, p. 402-407.
56. G. Ertürk, D. Berillo, M. Hedström, and B. Mattiasson, Microcontact-BSA imprinted capacitive biosensor for real-time, sensitive and selective detection of BSA, Biotechnology Reports, 2014, 3, p. 65-72.
57. H.-J. Chen, Z.-H. Zhang, L.-J. Luo, and S.-Z. Yao, Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin, Sensors and Actuators B: Chemical, 2012, 163 (1), p. 76-83.
58. S. Beyazit, B. Tse Sum Bui, K. Haupt, and C. Gonzato, Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization, Progress in Polymer Science, 2016, 62, p. 1-21.
59. J. Erdőssy, V. Horváth, A. Yarman, F. W. Scheller, and R. E. Gyurcsányi, Electrosynthesized molecularly imprinted polymers for protein recognition, TrAC Trends in Analytical Chemistry, 2016, 79, p. 179-190.
60. Y. Tugce Yaman, O. Akbal Vural, G. Bolat, and S. Abaci, Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6, Bioelectrochemistry, 2022, 145, p. 108053.
61. N. Özcan, C. Karaman, N. Atar, O. Karaman, and M. L. Yola, A novel molecularly imprinting biosensor including graphene quantum dots/multi-walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation, ECS Journal of Solid State Science and Technology, 2020, 9 (12), p. 121010.
62. M. d. L. Gonçalves, L. A. N. Truta, M. G. F. Sales, and F. T. C. Moreira, Electrochemical point-of care (PoC) determination of interleukin-6 (IL-6) using a pyrrole (Py) molecularly imprinted polymer (MIP) on a carbon-screen printed electrode (C-SPE), Analytical Letters, 2021, 54 (16), p. 2611-2623.
63. D. Oliveira, B. P. Correia, S. Sharma, and F. T. C. Moreira, Molecular imprinted polymers on microneedle arrays for point of care transdermal sampling and sensing of inflammatory biomarkers, ACS Omega, 2022, 7 (43), p. 39039-39044.
64. E. Verheyen, J. P. Schillemans, M. Van Wijk, M.-A. Demeniex, W. E. Hennink, and C. F. Van Nostrum, Challenges for the effective molecular imprinting of proteins, Biomaterials, 2011, 32 (11), p. 3008-3020.
65. T. Chow, Wetting of rough surfaces, Journal of Physics: Condensed Matter, 1998, 10 (27), p. L445.
66. R. Danzl, F. Helmli, and S. Scherer, Focus variation–a new technology for high resolution optical 3D surface metrology, in The 10th international conference of the slovenian society for non-destructive testing, 2009, p. 484-491.
67. B. Sredanović, G. Globocki-Lakić, D. Kramar, and F. Pušavec, Influence of workpiece hardness on tool wear in profile micro-milling of hardened tool steel, Tribology in Industry, 2018, 40 (1), p. 100.
68. D. Semnani, 7 - Geometrical characterization of electrospun nanofibers, Electrospun Nanofibers: Woodhead Publishing, 2017, M. Afshari, ed., p. 151-180.
69. J. Schmitt, and H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, 1998, 41 (1), p. 1-11.
70. M. Khan, Q. Wang, and M. E. Fitzpatrick, Atomic force microscopy (AFM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods: Elsevier, 2016, p. 1-16.
71. J. Epp, X-ray diffraction (XRD) techniques for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods: Elsevier, 2016, p. 81-124.
72. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 2018, 95 (2), p. 197-206.
73. A. P. Brown, and F. C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface, Analytical Chemistry, 1977, 49 (11), p. 1589-1595.
74. Y. Govindaraj, and S. Parida, Autogenous chemical and structural transition and the wettability of electropolymerized PANI surface, Applied Surface Science, 2019, 481, p. 174-183.
75. Q. Wang, B. Zhang, X. Lin, and W. Weng, Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan–mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker, Sensors and Actuators B: Chemical, 2011, 156 (2), p. 599-605.
76. I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, BioTechniques, 2004, 37 (5), p. 790-802.
77. N. V. Blinova, J. Stejskal, M. Trchová, and J. Prokeš, Control of polyaniline conductivity and contact angles by partial protonation, Polymer International, 2008, 57 (1), p. 66-69.
78. A. Diarisso, M. Fall, and N. Raouafi, Elaboration of a chemical sensor based on polyaniline and sulfanilic acid diazonium salt for highly sensitive detection nitrite ions in acidified aqueous media, Environmental Science: Water Research & Technology, 2018, 4 (7), p. 1024-1034.
79. J. H. Kim, J. H. Lee, R. R. Palem, M.-S. Suh, H. H. Lee, and T. J. Kang, Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy, Scientific Reports, 2019, 9 (1), p. 8706.
80. H. Hou, H. He, and Y. Wang, Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27, Scientific Reports, 2020, 10 (1), p. 3195.
81. S. H. Lee, and E. Ruckenstein, Adsorption of proteins onto polymeric surfaces of different hydrophilicities—a case study with bovine serum albumin, Journal of Colloid and Interface Science, 1988, 125 (2), p. 365-379.
82. E. A. El-Hefian, and A. H. Yahaya, Investigation on some properties of SDS solutions, Australian Journal of Basic and Applied Sciences, 2011, 5 (7), p. 1221-1227.
83. R. Kurrat, J. E. Prenosil, and J. J. Ramsden, Kinetics of human and bovine serum albumin adsorption at silica-titania surfaces, Journal of Colloid and Interface Science, 1997, 185 (1), p. 1-8.
84. K. Milakin, A. Korovin, E. Moroz, K. Levon, A. Guiseppi‐Elie, and V. Sergeyev, Polyaniline‐based sensor material for potentiometric determination of ascorbic acid, Electroanalysis, 2013, 25 (5), p. 1323-1330.
85. H. Larsericsdotter, S. Oscarsson, and J. Buijs, Structure, stability, and orientation of BSA adsorbed to silica, Journal of Colloid and Interface Science, 2005, 289 (1), p. 26-35.
86. R. C. Patil, S. F. Patil, I. S. Mulla, and K. Vijayamohanan, Effect of protonation media on chemically and electrochemically synthesized polyaniline, Polymer international, 2000, 49 (2), p. 189-196.
87. M. Sanchis, V. Blanes, M. Blanes, D. Garcia, and R. Balart, Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment, European Polymer Journal, 2006, 42 (7), p. 1558-1568.
88. S. C. Wang, K. S. Chang, and C. J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochimica Acta, 2009, 54 (21), p. 4937-4943.
89. Y. Yang, Y. Qing, X. Hao, C. Fang, P. Ouyang, H. Li, Z. Wang, Y. Liao, H. Fang, and J. Du, APTES-modified remote self-assembled DNA-based electrochemical biosensor for human papillomavirus DNA detection, Biosensors, 2022, 12 (7), p. 449.
90. N. S. K. Gunda, M. Singh, L. Norman, K. Kaur, and S. K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science, 2014, 305, p. 522-530.
91. M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, Wetting of regularly structured gold surfaces, Langmuir, 2005, 21 (5), p. 1753-1757.
92. A. Pistone, C. Scolaro, C. Celesti, and A. Visco, Study of protective layers based on crosslinked glutaraldehyde/3-aminopropyltriethoxysilane, Polymers, 2022, 14 (4), p. 801.
93. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, The Journal of Physical Chemistry B, 2004, 108 (43), p. 16864-16869.
94. M. Moshfegh, H. Forootanfar, B. Zare, A. Shahverdi, G. Zarrini, and M. Faramarzi, Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase, Digest Journal of Nanomaterials and Biostructures, 2011, 6, p. 1419-1426.
95. D. Zhang, H. E. Hegab, Y. Lvov, L. Dale Snow, and J. Palmer, Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer, SpringerPlus, 2016, 5 (1), p. 1-20.
96. I. G. Subramani, V. Perumal, S. C. Gopinath, N. M. Mohamed, N. Joshi, M. Ovinis, and L. L. Sze, 3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination, Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, p. 26-35.
97. N. Majoul, S. Aouida, and B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations, Applied Surface Science, 2015, 331, p. 388-391.
98. O. Zabihi, H. Khayyam, B. L. Fox, and M. Naebe, Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling, New Journal of Chemistry, 2015, 39 (3), p. 2269-2278.
99. J. B. Gilbert, M. F. Rubner, and R. E. Cohen, Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers, Proceedings of the National Academy of Sciences, 2013, 110 (17), p. 6651-6656.
100. S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam, and Y.-H. Kim, Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma, Surface and Coatings Technology, 2005, 200 (7), p. 2072-2079.
101. J. Chen, J. Pei, and H. Zhao, Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation, The Journal of Physical Chemistry C, 2021, 125 (35), p. 19345-19352.
102. S.-J. Park, K.-S. Cho, and S.-K. Ryu, Filler–elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites, Carbon, 2003, 41 (7), p. 1437-1442.
103. Z. Liu, J. Li, and X. Liu, Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties, ACS Applied Materials & Interfaces, 2020, 12 (5), p. 6503-6515.
104. Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, and T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science, 2016, 363, p. 572-577.
105. E. Ranjit, S. Hamlet, and R. M. Love, Keratin coated titanium as an aid to osseointegration: Physicochemical and mechanical properties, Surface and Coatings Technology, 2023, 462, p. 129457.
106. A. D. Gelinas, D. R. Davies, T. E. Edwards, J. C. Rohloff, J. D. Carter, C. Zhang, S. Gupta, Y. Ishikawa, M. Hirota, Y. Nakaishi, T. C. Jarvis, and N. Janjic, Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand, Journal of Biological Chemistry, 2014, 289 (12), p. 8720-8734.
107. A. Ganash, Anticorrosive properties of poly (o-phenylenediamine)/ZnO nanocomposites coated stainless steel, Journal of Nanomaterials, 2014, 2014, p. 40-40.
108. C. Su, J. Ma, B. Han, and L. Xu, Preparation of graphene oxide/poly (o-phenylenediamine) hybrid composite via facile in situ assembly and post-polymerization technology for the anode material of lithium ion battery, Journal of Solid State Electrochemistry, 2021, 25, p. 535-544.
109. M. S. Zoromba, M. Abdel-Aziz, M. Bassyouni, H. Bahaitham, and A. Al-Hossainy, Poly (o-phenylenediamine) thin film for organic solar cell applications, Journal of Solid State Electrochemistry, 2018, 22, p. 3673-3687.
110. S. Sayyah, A. Khaliel, A. A. Aboud, and S. Mohamed, Chemical polymerization kinetics of poly-o-phenylenediamine and characterization of the obtained polymer in aqueous hydrochloric acid solution using K2Cr2O7 as oxidizing agent, International Journal of Polymer Science, 2014, 2014, p.
111. U. Olgun, and M. Gülfen, Doping of poly (o-phenylenediamine): spectroscopy, voltammetry, conductivity and band gap energy, Reactive and Functional Polymers, 2014, 77, p. 23-29.
112. N. M. Martyak, P. McAndrew, J. E. McCaskie, and J. Dijon, Electrochemical polymerization of aniline from an oxalic acid medium, Progress in Organic Coatings, 2002, 45 (1), p. 23-32.
113. B. S. Vishnugopi, F. Hao, A. Verma, and P. P. Mukherjee, Surface diffusion manifestation in electrodeposition of metal anodes, Physical Chemistry Chemical Physics, 2020, 22 (20), p. 11286-11295.
114. E. Sibert, F. Ozanam, F. Maroun, R. Behm, and O. Magnussen, Diffusion-limited electrodeposition of ultrathin Au films on Pt (1 1 1), Surface Science, 2004, 572 (1), p. 115-125.
115. G. Zhao, J. Liu, M. Liu, X. Han, Y. Peng, X. Tian, J. Liu, and S. Zhang, Synthesis of molecularly imprinted polymer via emulsion polymerization for application in solanesol separation, Applied Sciences, 2020, 10 (8), p. 2868.
116. Z. Mazouz, S. Rahali, N. Fourati, C. Zerrouki, N. Aloui, M. Seydou, N. Yaakoubi, M. M. Chehimi, A. Othmane, and R. Kalfat, Highly selective polypyrrole MIP-based gravimetric and electrochemical sensors for picomolar detection of glyphosate, Sensors, 2017, 17 (11), p. 2586.
117. T. Young, M. Monclus, T. Burnett, W. Broughton, S. Ogin, and P. Smith, The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers, Measurement Science and Technology, 2011, 22 (12), p. 125703.
118. J. Konnerth, W. Gindl, and U. Müller, Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry, Journal of Applied Polymer Science, 2007, 103 (6), p. 3936-3939.
119. J. Adamcik, C. Lara, I. Usov, J. S. Jeong, F. S. Ruggeri, G. Dietler, H. A. Lashuel, I. W. Hamley, and R. Mezzenga, Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method, Nanoscale, 2012, 4 (15), p. 4426-4429.
120. A. Ikai, Local rigidity of a protein molecule, Biophysical Chemistry, 2005, 116 (3), p. 187-191.
121. Q. Zhao, A. K. Whittaker, and X. S. Zhao, Polymer electrode materials for sodium-ion batteries, Materials, 2018, 11 (12), p. 2567.
122. A. Ehsani, H. Parsimehr, H. Nourmohammadi, R. Safari, and S. Doostikhah, Environment‐friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices, Polymer Composites, 2019, 40 (12), p. 4629-4637.
123. J. Liu, and Q. Peng, Protein-gold nanoparticle interactions and their possible impact on biomedical applications, Acta biomaterialia, 2017, 55, p. 13-27.
124. M. Cui, R. Liu, Z. Deng, G. Ge, Y. Liu, and L. Xie, Quantitative study of protein coronas on gold nanoparticles with different surface modifications, Nano Research, 2014, 7, p. 345-352.
125. Y. Kong, X. Shan, J. Ma, M. Chen, and Z. Chen, A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol), Analytica Chimica Acta, 2014, 809, p. 54-60.

無法下載圖示 全文公開日期 2033/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE