簡易檢索 / 詳目顯示

研究生: 蔡尚洋
Shang-Yang Tsai
論文名稱: 偵測肺部呼吸時間差之聽診系統設計
Design of an Auscultation System for Detection of Asynchronous Lung Sounds
指導教授: 陳維美
Wei-Mei Chen
口試委員: 林敬舜
Ching-Shun Lin
呂政修
Jenq-Shiou Leu
周百謙
Pai-Chien Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 48
中文關鍵詞: 左右肺部差異呼吸音多麥克風時域
外文關鍵詞: Asynchronous lung sounds, Breath sound, Multi-microphone, Time-domain
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生理訊號數位化的研究已有許多可行性高的期刊論文發表,應用上也逐漸有相關產品以及醫療級儀器出現在市面上,包含心跳、異常呼吸以及血液成分等等。在生理訊號量測方面,非接觸、非侵入性的也有不少,整套系統輕量化、便於攜帶的近年來也出現很多。但在呼吸訊號方面,大多還是異常呼吸偵測以及單一麥克風收音為主,因此我們朝著普通呼吸偵測以及多個麥克風配合為方向。本文提出了一種多麥克風的聲音訊號演算法,可用於非侵入式生理訊號量測,同時整個設備體積小、便於攜帶。在生理訊號量測的部分,使用多個麥克風進行同步但不同位置的測量,固定在人體上的方式簡易好操作且黏貼的材料容易取得,並且在錄音過程中全程聲音放大倍率保持不變,僅需時域處理並以及數值上的運算,可以適應每位不同受測者的呼吸強度以及習慣,得出左右肺部呼吸的數據,證明左右肺部存在的差異,以及其差異的大小。


With the development of medical-grade measurement products, many consumers can measure physiological data with portable and lightweight sensors. Several studies on abnormal physiological signals demonstrate the feasibility of digitization and analysis. Due to the simplicity of respiratory signals, most abnormal respiration detecting systems are based on a single microphone. For the meticulousness of the analysis, we use multichannel microphones. Meanwhile, the non-invasive measurement system is contact and lightweight. In this thesis, we devise a multi-microphone-based system to detect the divergence and abnormalities between the lungs. Furthermore, the related algorithm can adapt to the physiological difference of various subjects.

論文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 1 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 3 2 相關研究 4 2.1 呼吸音收錄 4 2.2 呼吸音種類 5 2.3 左右肺部差異相關研究 5 2.4 呼吸音頻域 6 2.5 聲學系統架構 6 3 研究方法 7 3.1 硬體架構 7 3.1.1 收錄裝置 8 3.1.2 擷取裝置 10 3.1.3 硬體架構總結與優勢 10 3.2 左右肺部差異偵測 11 3.2.1 訊號初步處裡 11 3.2.2 左右肺呼吸音強度 15 3.2.3 左右肺部差異 18 3.3 左右肺部差異偵測之嘗試 19 3.3.1 以峰值檢測進行包絡 19 3.3.2 以中位數尋找音訊基準強度 20 4 實驗結果 21 4.1 左右肺部呼吸時間差 21 4.2 E 值與 F 值之定值 25 4.2.1 E 值之定值 25 4.2.2 F 值之定值 28 4.3 峰值檢測與中位數 32 4.4 STFT 之對比 33 5 討論 35 6 結論 37 參考文獻 38

[1] “3D illustration of Lungs, medical concept.” available on:https://www.
istockphoto.com/portfolio/yodiyim?mediatype=photography, 2016.
[2] “【FPGA】Interpolated FIR Filter.” available on:https://blog.csdn.net/
Reborn_Lee/, 2018.
[3] H. Pasterkamp, S. Patel, and G. R. Wodicka, “Asymmetry of respiratory sounds and
thoracic transmission,” Medical and Biological Engineering and Computing, vol. 35,
pp. 103–106, 2006.
[4] J.-Z. Tsai, M.-L. Chang, J.-Y. Yang, D. Kuo, C.-H. Lin, and C.-D. Kuo, “Left–right
asymmetry in spectral characteristics of lung sounds detected using a dual-channel
auscultation system in healthy young adults,” Sensors, vol. 17, no. 6, 2017.
[5] E. Kaniusas, H. Pfutzner, and B. Saletu, “Acoustical signal properties for cardiac/
respiratory activity and apneas,” IEEE Transactions on Biomedical Engineering,
vol. 52, no. 11, pp. 1812–1822, 2005.
[6] P. Corbishley and E. Rodriguez-Villegas, “Breathing detection: Towards a miniaturized, wearable, battery-operated monitoring system,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 196–204, 2008.
[7] X. Zhang, B. B. Narakathu, D. Maddipatla, V. S. Turkani, B. J. Bazuin, and M. Z.
Atashbar, “Digital signal processing and analysis of cardiopulmonary audio using a
multi-channel stethograph system,” in 2018 IEEE SENSORS, pp. 1–4, 2018.
[8] C. Kalkbrenner, P. Stark, G. Kouemou, M.-E. Algorri, and R. Brucher, “Sleep monitoring using body sounds and motion tracking,” in 2014 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6941–
6944, 2014.
[9] D. Oletic, B. Arsenali, and V. Bilas, “Low-power wearable respiratory sound sensing,” Sensors (Basel, Switzerland), vol. 14, pp. 6535–66, 04 2014.
[10] Y. Qiu, A. R. Whittaker, M. Lucas, and K. Anderson, “Automatic wheeze detection
based on auditory modelling,” Proc Inst Mech Eng H, vol. 219, no. 3, pp. 219–27,
2005.
[11] S.-H. Li, B.-S. Lin, C.-H. Tsai, C.-T. Yang, and B.-S. Lin, “Design of wearable
breathing sound monitoring system for real-time wheeze detection,” Sensors, vol. 17,
no. 1, 2017.
[12] Y. Ren, C. Wang, Y. Chen, J. Yang, and H. Li, “Noninvasive fine-grained sleep
monitoring leveraging smartphones,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8248–8261, 2019.
[13] A. Martin and J. Voix, “In-ear audio wearable: Measurement of heart and breathing
rates for health and safety monitoring,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 6, pp. 1256–1263, 2018.
[14] B. Xue, B. Deng, H. Hong, Z. Wang, X. Zhu, and D. D. Feng, “Non-contact sleep
stage detection using canonical correlation analysis of respiratory sound,” IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 614–625, 2020.
[15] F. Dalmay, M. Antonini, P. Marquet, and R. Menier, “Acoustic properties of the
normal chest,” European Respiratory Journal, vol. 8, no. 10, pp. 1761–1769, 1995.
[16] G. Wodicka, K. Stevens, H. Golub, E. Cravalho, and D. Shannon, “A model of acoustic transmission in the respiratory system,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 9, pp. 925–934, 1989.
[17] F. Dalmasso, J. Vanderschoot, G. Righini, and A. R. A. Sovijärvi, “Definition of
terms for applications of respiratory sounds,” 2000.
[18] Y. Nam, B. A. Reyes, and K. H. Chon, “Estimation of respiratory rates using the
built-in microphone of a smartphone or headset,” IEEE Journal of Biomedical and
Health Informatics, vol. 20, no. 6, pp. 1493–1501, 2016.
[19] C. Kalkbrenner, M. Eichenlaub, and R. Brucher, “Development of a new homecare sleep monitor using body sounds and motion tracking,” Current Directions in
Biomedical Engineering, vol. 1, no. 1, pp. 30–33, 2015.

無法下載圖示 全文公開日期 2024/08/29 (校內網路)
全文公開日期 2027/08/29 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE