簡易檢索 / 詳目顯示

研究生: 曾瑜婷
Yu-Ting - Tseng
論文名稱: 土壤塑性程度對參數影響性之研究
A Study of Soil Parameters Affected by Plasticity Level
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pio-Go Hsieh
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 168
中文關鍵詞: 皂土塑性指數三軸壓密不排水壓縮試驗
外文關鍵詞: bentonite, plasticity index(PI), consolidated undrained triaxial compression Test
相關次數: 點閱:475下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

土壤塑性程度包含塑性指數(PI)、液性限度(LL)及塑性限度(PL),其能直接表達土壤基本特性,且於工程使用上為預測參數之重要指標。本研究以台北黏土為基礎,使用濕搗法製作添加皂土之重模試體,利用皂土之高液性限度特性改變試體塑性,並以三軸均向壓密不排水壓縮(CIUC)試驗及三軸K0壓密不排水壓縮(CK0UC)試驗結果為主,探討試體於正常壓密狀態下各參數受塑性程度之影響。試驗結果顯示,土壤破壞參數包含不排水剪力強度、有效剪抗角及破壞時超額孔隙水壓參數,與塑性指數成良好線性關係;將不同塑性土壤受K0壓密及均向壓密試驗結果與塑性指數比較,兩試驗正規化剪力強度之比值,隨塑性指數增加而增加;兩試驗有效剪抗角之比值,隨塑性指數增加而減少;破壞時超額孔隙水壓參數 隨塑性指數增加而增加。


Plasticity level is inclusive of plasticity index(PI), liquid limit(LL) and plasticity limit(PL). It could indicate basic characteristics of soil and also be an important index to predict other soil parameters for engineering use. In order to establish the relationship of soil parameters and plasticity level, the research conducted included triaxial isotropic consolidation undrained compression test (CIUC) and triaxial K0 consolidation undrained compression test (CK0UC) on three specimen with different plasticity index. The specimen was composed of Taipei clay and Bentonite, and was produced using the wet undercompaction method. Different percentages of Bentonite which has a higher liquid limit than Taipei clay was mixed with Taipei clay to change the plasticity index of reconstituted soil. From the experiments results, soil failure parameters which includes undrained shear strength, effective friction angle and excess pore pressure parameter at failure have good relations with plasticity index. The use of the ratio of CK0UC and CIUC to compare different consolidation procedures would be affected by plasticity index. The ratio of normalized undrained shear strength increases when plasticity index increases which is the same as the result for the excess pore pressure parameter at failure. In contrast, the ratio of effective friction angle will decrease when plasticity index increases.

中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 1 第二章 文獻回顧 3 2.1 重模試體方法 3 2.2 土壤正規化行為 5 2.3 土壤參數與塑性程度關係 6 2.4 均向與異向壓密 13 2.5 試驗數據修正方式 14 2.6 小結 16 第三章 試驗計畫、設備及方法 41 3.1試驗計畫及流程 41 3.2土樣來源 41 3.3 重模試體製作 43 3.3.1 濕搗法 43 3.3.2 濕治分裂模飽和 45 3.4 傳統三軸儀器介紹 46 3.5 全自動三軸儀器設備 47 3.5.1 軸向加壓系統 47 3.5.2 壓力控制系統 48 3.5.3 局部位移之監測 49 3.5.4 其他監測裝置 51 3.5.5 安裝試體所需配件 51 3.6 監測儀器之校正 52 3.7 試驗方法及內容 53 3.7.1 試驗參考規範 53 3.7.2 單向度壓密試驗 54 3.7.3 三軸均向壓密不排水(CIU)壓縮試驗 54 3.7.4 三軸K0壓密不排水(CK0U)壓縮試驗 55 3.7.5 彎曲元件試驗 62 3.8試驗結果計算與修飾 65 3.8.1 試驗結果計算 65 3.8.2 試驗數據之修飾 68 第四章 試驗結果與綜合比較 95 4.1 基本物理性質試驗 95 4.2 單向度壓密試驗 96 4.2.1 預壓密應力 96 4.2.2 垂直向壓密係數(Cv) 98 4.2.3 壓縮指數(Cc)及回脹指數(Cs) 100 4.3 三軸試驗土壤參數之選定 101 4.4 三軸均向壓密壓縮(CIUC)試驗結果 104 4.4.1 均向壓密階段 105 4.4.2 受剪數據修飾 107 4.4.3 不排水壓縮試驗結果 108 4.5 三軸K0壓密不排水壓縮(CK0UC)試驗 109 4.5.1 K0壓密階段 110 4.5.2 受剪數據修飾 111 4.5.3 不排水壓縮試驗結果 112 4.5.4 垂直彎曲元件試驗結果 113 4.6 土壤參數與塑性指數關係 114 4.6.1 正規化不排水剪力強度 115 4.6.2 破壞時超額孔隙水壓參數(Af) 117 4.6.3 剪力模數與最大剪力模數比值 117 4.6.4 均向及異向壓密 119 4.6.5 受剪階段割線楊氏模數變化 120 4.6.6 受剪階段剪力模數變化 121 第五章 結論與建議 160 5.1結論 160 5.2 建議 161 參考文獻 163 附錄 168

秦中天、鄭在仁及劉泉枝(1989) ,「台北沉泥之不排水剪力強度與過壓密比關係」,中國土木水利工程學刊,第一卷,第三期,第245-250頁

秦中天及劉泉枝(1997) ,「台北粉質粘土體積變化與不排水行為」,中國土木水利工程學刊,第九卷,第四期,第665-678頁

高明宏(2001),「台北沉泥質粘土小應變之不排水勁度模數量測」,國立台灣科技大學營建工程系碩士論文,台北

喬國華(1992),「台北粉土質粘土在不同應力路徑下之力學行為」,國立台灣科技大學營建工程系碩士論文,台北

張聰耀(1996),「台北沉泥質粘土之變形特性研究」,國立台灣科技大學營建工程系碩士論文,台北

游明縑(2000) ,「不同試驗方法對黏土壓縮與壓密性質之影響」,國立中央大學土木工程系碩士論文,桃園

楊樹榮(2005) ,「路基土壤之不飽和吸力特性及反覆載重之力學行為」,國立中央大學土木工程系博士論文,桃園

廖志穎(2007),「不飽和路基土壤濕化及剪力模數研究」,國立台灣科技大學營建工程系碩士論文,台北

劉泉枝(1991),「臺北盆地凝聚性土壤枝不排水剪力強度與孔隙水壓參數」,中國土木水利工程學刊,第三卷,第三期,第267-270頁

劉泉枝、秦中天及謝旭昇(1991) ,「非均向壓密及主應力軸轉變對松山層土壤剪力強度之影響」,中國土木水利工程學刊,第三卷,第一期,第83-88頁

蕭文達(1992),「台北沉泥質粘土之強度特性研究」,國立台灣科技大學營建工程系碩士論文,台北

Bear, J. (1979), Hydraulic of Groundwater, McGraw-Hill, USA

Bishop, A. W. and Wesley, L. D.(1975), “Hydraulic triaxial apparatus for controlled stress path testing”, Géotechnique, Vol.25, No.4, pp.657-670

Brooker, E. W. and Ireland, H.O. (1965), “Earth Pressures at Rest Related to Stress History”, Canadian Geotechnical Journal, Vol. 2, No. 1, pp.1-15

Burland, J. B., and Symes, M. J. (1982), “A Simple Axial Displacement Gauge for Use in the Triaxial Apparatus.” Ge ́otechnique, Vol.32, No.1, pp.62-65.

Chandler, R.J. (1988), “The In-Situ Measurement of the Undrained Shear Strength of Clay Using the Field Vane.”, Vane Shear Strength Testing in Soils: Field and Laboratory Studies, ASTM STP 1014, West Conshohocken, pp. 13-44

Choo, J., Jung, Y. H., Cho, W. and Finno, R.J.(2013), “Effects of Preshear Stress Path on Nonlinear Shear Stiffness Degradation of Cohesive Soils.”, Geotechnical Testing Journal, Vol. 36, No. 2, pp.1-8

Clayton, C.R.I., Khatrush, S.A., Bica, A.V. D., and Siddique, A. (1989), “The use of hall effect semiconductors in geotechnical instrumentation.” Geotechnical Testing Journal, Vol.12, No.1, pp. 69-76

Djoenaidi, W.J. (1985), “A Compendium of Soil Properties and Correlation”, Master of Engineering and Science, Thesis, University of Sydney

Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y.S., and Sato, T. (1991), “A simple gauge for local small strain measurement in the laboratory.” Soils Found., Vol.31, No.1, pp.169-180.

Holtz, R. D., Kovacs, W. D. and Sheahan, T. C.(2011), An Introduction to Geotechnical Engineering (2nd ed), Pearson Education Inc., USA

Ho, I.H. and Hsieh, C.C.(2013), “Numerical Modeling for Undrained Shear Strength of Clays Subjected to Different Plasticity Indexes”, Journal of GeoEngineering, Vol.8, No.3, pp.91-100

Ishihara, K. (1993),“Liquefaction and Flow Failure during Earthquakes”, Géotechnique, Vol.43, No.3, pp.351-451

Jamiolkowski, M., Ladd, C.C., Germaine, J. and Lancellotta, R. (1985), “New Developments in the Field and Lab Testing of Soils.”, Proceeding of the Eleventh International Conference on soil mechanics and Foundation Engineering, Vol.1, pp.57-153, San Francisco

Jardine, R.J., Symes, M. J., and Burland, J. B. (1984), “The measure-ement of soil stiffness in the triaxial apparatus.” Géotechnique, Vol.34, No.3, pp.323-340.

Jesmani, M., Kashani, H.F. and Kamalzare M. (2010), “Effect of Plasticity and Normal Stress on the Undrained Shear Modulus of Clayey Soils”, Acta geotechnical slovenica, No.1, pp.47-59

Kokusho, T. (1980),=“Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils Found., Vol.20, No.2, pp.45-60.

Kung, T.C. (2003), “Surface Settlement Induced by Excavation with Consideration of Small Strain Behavior of Taipei Silty Clay”, Ph.D. thesis, National Taiwan University of Science and Technology, Taipei, R.O.C.

Ladd, C.C. (1964), “Settlement Analyses for Cohesive Soils”, Research Report R71-2, Soil Publication 272, Dep. Of Civil Engineering, Massachusetts Institute of Technology, pp.107

Ladd, C.C. (1991), “Stability Evaluation during Staged Construction.”, Journal of Geotechnical Engineering, Vol. 117, No. 4, pp.540-615

Ladd, C.C. and Foott, R. (1973), “New Design Procedure for Stability of Soft Clay”, J. Geotech. Engrg. Div., ASCE, Vol.100, pp.763-786

Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F. and Poulos, H.G. (1977), “Stress-Deformation and Strength Characteristic”, Proceeding of the Ninth International Conference on soil mechanics and Foundation Engineering, Vol.2, pp.421-494, Tokyo

Ladd, R.S. (1978),“Preparing Test Specimens Using Undercompac-tion”, Geotechnical Testing Journal, GTJODJ, Vol. 1,No. 1, March 1978, pp. 16-23

Lambe, T. W. (1958), “The Structure of Compacted Clay”, Journal of the Soil Mechanical and Foundation Division ASCE, Vol. 84, pp. 1-35

Massarsch, K. R. (1979), “Lateral Earth Pressure in Normally Consolidated Clay”, Proceeding of the Seventh European Conference on soil Mechanics and Foundation Engineering, Vol. 2, pp.245-250 Brighton, England

Mayne, P. W. (1985), “Stress Anisotropy Effect on Clay Strength”, Journal of Geotechnical Engineering, Vol. 111, No. 3, pp.356-366

Mayne, P. W. (2012), “Invited Keynote: Quandary in Geomaterial Characterization: New vs. Old”, Shaking the Foundations of Geoengineering Education, pp.356-366, London

Nakase, A. and Kamei, T.(1983), “Undrained Shear Strength Anisotropy of Normally Consolidated Cohesive Soils”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.23, No.1, pp.91-101

Santagata, M.C. (1990), “Factors affecting the Initial Stiffness and Stiffness Degradation of Cohesive Soils”, Ph.D. thesis, MIT, Cambridge

Santagata M., Germaine J. T. and Ladd C.C.(2005), “Factors affecting the Initial Stiffness and Cohesive Soils”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No.4, pp.430-441

Skempton, A.W. (1957), Discussion, Proceeding of Institution of Civil Engineering, Vol. 7, pp.305-307, London

Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice(2nd ed) , John Wiley and Sons, New York

Teng, F.C. (2010), “Prediction of Ground Movement Induced by Excavation Using the Numerical method with the Consideration of Inherent Stiffness Anisotropy”, Ph.D. thesis, National Taiwan University of Science and Technology, Taipei, R.O.C.

U.S. Navy(1986), “Soil Mechanics, Foundations, and Earth Structures” NAVFAC Design Manual DM7-2, Washington, D.C.

Uzan, J. (1998), “Characterization of Clayey Subgrade materials for Mechanistic Design of Flexible Pavement”, Transportation Research Record 1629, 99.189-196

Vardanega, P. J. and Bolton, M. D. (2013), “Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 9, pp.1575-1589

Vocetic, M. and Dobry, R.(1991), “Effect of Soil Plasticity on Cyclic Response”, Journal of Geotechnical Engineering, Vol. 117, No. 1, pp.89-107

Wroth, C.P. and Wood, D.M. (1978), “The Correlation of Index Properties with Some Basic Engineering Properties of Soils”, Canadian Geotechnical Journal, Vol. 15, No. 2, pp. 137-145

QR CODE