簡易檢索 / 詳目顯示

研究生: 高志承
Chih-Chen Kao
論文名稱: 觀測獨立控制濕度與溫度空調系統之性能
Experimental observations on performance of an air conditioning system controlling temperature and humidity independently
指導教授: 林怡均
Yi-Jiun Peter Lin
口試委員: 朱佳仁
Chia-Ren Chu
朱瑾
Jinn P. Chu
蔡尤溪
Yew-Khoy Chuah
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 175
中文關鍵詞: 液體除濕系統空調系統氯化鋰溶液濕度與溫度調節電能消耗功率
外文關鍵詞: Hybrid liquid desiccant system, Air-conditioning system, LiCl solution, Humidity and temperature controlling, Electricity power consumption.
相關次數: 點閱:254下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為觀測液體除濕空調系統的性能表現,此系統使用氯化鋰溶液吸收水分的特性移除潛熱以控制空氣中的濕度,接續使用冷凍循環系統控制空氣的溫度,因此相較於傳統空調系統,具有能夠獨立地控制濕度與溫度的特點,另外本系統利用冷凍循環系統冷凝器的排放熱量,類似熱泵的系統,還原氯化鋰溶液濃度,回復至吸濕前的狀態,達到節約能源的效益。本論文內容主要觀測此空調系統在2016年3月1日至2016年6月30日之間,系統在加熱模式與冷卻模式下,此空調系統的供風空氣在各個除濕及溫控階段的溫度及濕度狀態,以及調控後的供風空氣條件對於室內環境溫、濕度的改變,並且比較不同的外界環境溫、濕度對本系統電能消耗量的影響。
    此液體除濕空調系統在除濕過程不需先過度地冷卻空氣以達除濕目的,而是利用氯化鋰溶液吸收空氣中的水蒸氣,在夏季冷卻模式中,能將空氣中的絕對濕度調降至9.5±1.5 g/kg;在冬季加熱模式中,系統調控濕度之能力會因外界環境而有所不同,在外界潮濕環境,系統能將絕對濕度調降至6.4±0.8 g/kg,在外界乾燥環境,系統能將絕對濕度調降至4.9±0.6 g/kg。觀測及計算結果顯示,系統在冷卻模式中,性能係數 (COP) 約為3.6,而在加熱模式時,外界潮濕環境與乾燥環境下之性能係數約分別為2及0.8。


    This study observes performances of the hybrid liquid desiccant sys-tem (HLDS). The system controls the air humidity by using LiCl solution to remove the latent heat and then controls the air temperature by using the vapor compression refrigeration system. Different from the conventional air-conditioning system, this system controls the air humidity and temperature independently. In addition, this system uses the removal heat from the condenser of the vapor compression refrigeration system to restore LiCl solution back to the initial state for absorption. This is an energy-efficiency approach to heat LiCl solution. This study mainly observes the humidity and temperature conditions of the supply air loop at each stage with the heating and cooling modes of HLDS from March 1st to June 30th in 2016. This study observes the influences of different supply air conditions on the indoor air performances, and compares the relationship between the electricity power consumption of the system and the outdoor air conditions, namely humidity and temperature.
    During the dehumidification process, HLDS absorbs the water vapor in air by using the LiCl solution, instead of cooling down the air below the dew point temperature. HLDS has two modes: a cooling mode for the summer, and a heating mode for the winter. In cooling mode, it regulates absolute humidity of conditioned air to 9.5±1.5 g/kg. In the heating mode, it regulates the absolute humidity of conditioned air to 6.4±0.8 g/kg for the wet day case. However, for the dry day case, a very low value of absolute humidity 4.9±0.6 g/kg is maintained. According to the observation results, the coefficient of performance (COP) of HLDS is about 3.6 in the cooling mode, and the COP is about 2 for the wet day case and about 0.8 for the dry day case, respectively, in the heating mode.

    目錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 緒論1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 冷凝除濕. . . . . . . . . . . . . . . . . . . . . 2 1.2.2 化學除濕. . . . . . . . . . . . . . . . . . . . . 3 1.2.3 結合化學除濕的空調系統. . . . . . . . . . . . . 4 1.3 論文架構及內容. . . . . . . . . . . . . . . . . . . . . . 6 2 基礎理論9 2.1 濕空氣線圖介紹. . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 濕空氣線圖架構. . . . . . . . . . . . . . . . . 9 2.1.2 空氣調節的基本變化過程. . . . . . . . . . . . . 11 2.2 濕空氣學(Psychrometrics) 理論. . . . . . . . . . . . . 12 2.2.1 乾空氣及濕空氣. . . . . . . . . . . . . . . . . 12 2.2.2 濕空氣熱力性質. . . . . . . . . . . . . . . . . 13 2.3 空氣的質傳與熱傳遞. . . . . . . . . . . . . . . . . . . 16 2.3.1 風量計算方法. . . . . . . . . . . . . . . . . . . 16 2.3.2 空氣質量流率計算方法. . . . . . . . . . . . . . 17 2.3.3 空氣的熱傳率計算方法. . . . . . . . . . . . . . 18 2.4 系統性能係數計算. . . . . . . . . . . . . . . . . . . . 18 3 實驗設備、研究及方法21 3.1 歐盟計畫. . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 空調設計. . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 通風風量設計. . . . . . . . . . . . . . . . . . . 22 3.2.2 供回風管設計. . . . . . . . . . . . . . . . . . . 23 3.2.3 風機壓損設計. . . . . . . . . . . . . . . . . . . 23 3.2.4 空調冷凍負載估算. . . . . . . . . . . . . . . . 26 3.3 實驗設備介紹與原理. . . . . . . . . . . . . . . . . . . 31 3.3.1 冷凍循環系統. . . . . . . . . . . . . . . . . . . 32 3.3.2 液體除濕系統. . . . . . . . . . . . . . . . . . . 33 3.3.3 空調箱. . . . . . . . . . . . . . . . . . . . . . 34 3.4 實驗量測空氣溫濕度感測器位置. . . . . . . . . . . . . 35 4 結果與討論37 4.1 實驗系列. . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 37 4.1.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 38 4.2 供風迴路各個階段的溫濕度量測實驗結果. . . . . . . . . 39 4.2.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 39 4.2.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 40 4.2.3 小結. . . . . . . . . . . . . . . . . . . . . . . 41 4.3 供風風量的量測實驗結果. . . . . . . . . . . . . . . . . 41 4.3.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 41 4.3.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 42 4.3.3 換氣率. . . . . . . . . . . . . . . . . . . . . . 42 4.4 室內溫濕度的量測實驗結果. . . . . . . . . . . . . . . . 42 4.4.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 43 4.4.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 44 4.4.3 小結. . . . . . . . . . . . . . . . . . . . . . . 44 4.5 外界環境條件與系統電能消耗功率的量測實驗結果. . . . 45 4.5.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 45 4.5.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 47 4.6 系統性能係數的量測實驗結果. . . . . . . . . . . . . . . 48 4.6.1 加熱模式. . . . . . . . . . . . . . . . . . . . . 49 4.6.2 冷卻模式. . . . . . . . . . . . . . . . . . . . . 50 4.6.3 小結. . . . . . . . . . . . . . . . . . . . . . . 52 5 結論與建議53 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 參考文獻55 作者簡歷149

    [1] 中央氣象局, 2016, 台灣氣候特徵簡介。
    [2] 王倩, 郝紅, & 盧建津. 2005, 液體除濕空調系統國內外研究進展. 煤氣與熱力25, 72-76.
    [3] Yamaguchi, S., & Saito, K., 2013, Numerical and experimental performance analysis of rotary desiccant wheels. International Journal of Heat and Mass Transfer 60, 51-60.
    [4] Jia, C. X., Dai, Y. J., Wu, J. Y., & Wang, R. Z., 2006, Analysis on a hybrid desiccant air-conditioning system. Applied Thermal Engineering 26, 2393-2400.
    [5] Mohan, B. S., Maiya, M. P., & Tiwari, S., 2008, Performance characterization of liquid desiccant columns for a hybrid air-conditioner. Applied Thermal Engineering 28, 1342-1355.
    [6] Yamaguchi, S., Jeong, J., Saito, K., Miyauchi, H., & Harada, M., 2011, Hybrid liquid desiccant air-conditioning system: Experiments and simulations. Applied Thermal Engineering 31, 3741-3747.
    [7] Bergero, S. & Chiari, A., 2011, On the performances of a hybrid air-conditioning system in different climatic conditions. Energy 36, 5261-5273.
    [8] Yadav, Y. K., & Kaushik, S. C., 1991, Psychometric techno economic assessment and parametric studies of vapor-compression and solid/liquid desiccant hybrid solar space conditioning systems. Heat Recovery Systems and CHP 11, 563-572.
    [9] Gommed, K., & Grossman, G., 2007, Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy 81, 131-138.
    [10] Handbook, A. S. H. R. A. E., 2001, Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers.
    [11] Cengel, Y. A., & Boles, M. A., 2011, Thermodynamics: an engineering approach. 7e.
    [12] Harrison, L. P., 1963, Fundamental concepts and definitions relating to humidity. Humidity and moisture 3, 3-70.
    [13] Hyland, R.W., & Wexler, A., 1983a, Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa. ASHRAE Transactions 89, 520-535.
    [14] Hyland, R.W., & Wexler, A., 1983b, Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Transactions 89, 500-519.
    [15] Alonso, L., Pena, X., Pascual, C., Prieto, J., Ortiga, J., &
    Gommed, K., 2015, Design, simulation and testing of a hybrid liquid desiccant for independent control of temperature and humidity. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale EPFL-CONF-213339, 333-338.
    [16] Chen, Y., Yin, Y., & Zhang, X., 2014, Performance analysis of a hybrid air-conditioning system dehumidified by liquid desiccant with low temperature and low concentration. Energy and Buildings 77, 91-102.
    [17] Standard, A. S. H. R. A. E. Standard 62.1-2007., 2007, Ventilation for Acceptable Indoor Air Quality.
    [18] Wang, S. K., &Wang, S. K., 2000, Handbook of air conditioning and refrigeration.
    [19] Handbook, A. S. H. R. A. E., 2009, Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers.
    [20] Schiavon, S., Hoyt, T., & Piccioli, A., 2014, Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Building Simulation 7, 321-334.

    QR CODE