簡易檢索 / 詳目顯示

研究生: 徐英智
Ying-Chih Hsu
論文名稱: 藍寶石基板奈米級V型溝槽切削深度及溫升之研究
A Study of Cutting Depth and Temperature Rise of Nanoscale V-Shaped Groove on Sapphire Substrate
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 翁政義
Cheng-I Weng
陳朝光
Cha`o-Kuang Chen
陳文華
Wen-Hwa Chen
王國雄
Kuo-Shong Wang
蔡潁堅
Ying-Chien Tsai
黃佑民
You-Min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 234
中文關鍵詞: 原子力顯微鏡比下壓能奈米切削準穩態分子靜力學溫度場
外文關鍵詞: Atomic force microscopy (AFM), Specific down force energy (SDFE), Nanoscale cutting, Quasi-steady molecular statics, Temperature field
相關次數: 點閱:314下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在建立一預測多道次奈米切削加工深度之理論模式,藉以探討在奈米級藍寶石V型溝槽切削下,欲達到所需切削深度的下壓力與加工道次之關係。同時並應用分子靜力學奈米級切削溫度模擬模式,計算被加工工件所產生之溫度提升結果。
本文應用原子力顯微鏡(AFM)鑽石探針為刀具,進行多道次奈米切削藍寶石基板表面V型溝槽之實驗及分析,並創新提出以比下壓能之觀念進行藍寶石基板奈米V型溝槽的加工深度預測之理論模式。本文提出相同材質之比下壓約能為一定值,並用實驗驗證加工藍寶石基板的比下壓能數值,進而發展出在固定下壓力及固定探針形狀下,以原子力顯微鏡探針進行多道次切削藍寶石基板之切削深度預測方法。
而於奈米切削加工過程,在預達到所需加工深度之奈米溝槽結構下,為避免探針刀具之懸臂及探針頭因施予過大的作用力於工件而造成設備的損壞,往往需以較小的作用力來進行多道次加工以達到所需深度。本文並以所提出之比下壓能理論,再提出一能夠預估最少切削加工道次的估算方法,使在實際加工過程中,探針刀具能以適當的下壓作用力及最少加工道次來達到所需加工深度,並將估算結果與實際實驗結果作一驗證。
本文進一步假設在奈米級切削過程中,其主要熱源的產生是由工件原子間的變形而產生類似塑性變形所產生的塑性變形熱,及工件原子與刀具原子之間所產生的摩擦熱之兩種熱源產生。並應用所發展之三維準穩態分子靜力學奈米級模擬切削模式,計算所得到之等效應力及等效應變的乘積,此即可得到類似塑性變形功之塑性熱源產生熱。又本文應用準穩態分子靜力學奈米級切削模式之計算奈米級切削力之方法,其所得到莫氏力的力平衡及工件原子在瞬間的位移增量,再用力平衡概念,將與刀具面上較接近之各工件原子所受之莫氏力分解成在刀面上之正向分力與切線分力,而此切線分力即類似切削工件產生之摩擦力。而原子所受摩擦力與沿刀具切面之原子位移量的乘積即可視為工件原子在刀面上產生類似摩擦產生的摩擦熱。本文再由計算所得到塑性變形和摩擦二者所產生的熱源,利用有限差分熱傳方程式得到經過熱傳後工件和切屑的溫度分佈的結果,並進行比較分析。本文先以單晶銅工件之奈米級正交切削溫度分佈模擬之結果與分子動力學方式之文獻模擬所得到之溫度分佈結果進行比對驗證,進一步應用本論文所發展的分子靜力學奈米級切削溫度模擬模式模擬計算用AFM探針加工藍寶石基板V型溝槽之切削力、等效應變、等效應力及藍寶石切削工件溫度場分佈分析。


This thesis aims to establish a theoretical model for prediction of fabrication depth of multi-pass nanoscale cutting V-shaped groove on sapphire, attempting to explore the relationship between the down force of the expected cutting depth and cutting pass under nanocutting. Meanwhile, this thesis applies simulation of molecular statics to calculate the result of temperature rise produced from the fabricated workpiece.
This thesis applies an atomic force microscopy (AFM) diamond probe as a cutting tool, which carries out the experiment of multi-pass nanocutting of V-shaped grooves on the surface of sapphire substrate. This thesis innovatively proposes the concept of specific down force energy (SDFE) to develop the theoretical model for prediction of fabrication depth of V-shaped grooves on sapphire substrate. This thesis suggests that the SDFE of the same material is a fixed value. Through conducting the experiment, it verified the numerical value of SDFE in cutting of sapphire substrate, and further develops the prediction method of the cutting depth of sapphire substrate during multi-pass cutting by AFM probe under a fixed down force and a fixed probe shape.
When a cutting depth of the nanoscale groove structure is expected to be reached in the nanocutting process, the cantilever and the tip of probe of the cutting tool have to avoid applying excessive action force on the workpiece which makes any damage of equipment should be created. Therefore, smaller action force is always needed when carrying out multi-pass cutting so as to achieve the required cutting depth. Besides, in order to decrease the number of cutting passes and save the fabrication time, this thesis uses its proposed SDFE theory to develop an estimation method for the fewest cutting passes. In the process of actual cutting, the cutting tool of probe is able to apply a suitable down force and the least number of fabrication passes to achieve the required cutting depth. Based on the actual experimental result, the thesis verified the correctness of the estimated result.
Furthermore, this thesis supposes that in the nanocutting process, the temperature rise during nanoscale cutting the workpiece is mainly produced from two heat sources, the one is plastic deformation heat produced from quasi-plastic deformation, which is caused by deformation between atoms of workpiece, and the other is friction heat produced between workpiece atoms and tool atoms. This thesis applies the developed three-dimensional quasi-steady molecular statics nanocutting simulation model to calculate the product of multiplication of the obtained equivalent stress and equivalent strain. During this time, the thesis can acquire the heat produced from plastic heat source of quasi- plastic deformation. Besides, this thesis also applies the calculation method of nanocutting force by quasi-steady molecular statics nanocutting model, to obtain Morse force balance and displacement increment of workpiece atoms in a moment. After that, employing the concept of force balance, this thesis decomposes the Morse force borne by different workpiece atoms being closer together on the tool face, to be normal force on the face of tool and tangential force . Such a tangential force is similar to the friction force produced from cutting workpiece. And the product of multiplication of the friction force borne by atoms and the displacement of atoms on the cutting section of cutting tool could be regarded as the friction heat produced from similar kind of friction created by workpiece atoms on the face of tooling. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and the results also be carried on comparison and analysis. This thesis firstly uses the result of nano orthogonal cutting simulation of single-crystal copper workpiece to make comparative verification with the temperature distribution result obtained from the past literature’s simulation by the way of molecular dynamics. Furthermore, this thesis uses the developed molecular statics temperature field simulation model of nanoscale cutting to calculate the cutting force, equivalent strain, equivalent stress and temperature field distribution of sapphire workpiece during fabrication of V-shaped groove on sapphire substrate by AFM probe.

中文摘要I ABSTRACTII 誌 謝IV 目錄V 圖索引X 表索引XIX 符號表XXVI 第一章 緒論1 1.1 研究動機及目的1 1.2 文獻回顧4 1.2.1 原子力顯微鏡奈米加工之文獻4 1.2.2 分子力學奈米加工模擬之文獻9 1.2.3 切削深度及多道次加工參數最佳化之文獻15 1.3 本文架構17 第二章 以原子力顯微鏡探針進行奈米切削實驗19 2.1 實驗設備及實驗試片19 2.1.1 多模態原子力顯微鏡D310019 2.1.2 實驗用探針及藍寶石基板22 2.2 實驗方法及步驟26 2.3 AFM探針下壓力量測方法30 2.4 AFM探針刀具奈米級切削藍寶石基板實驗結果35 第三章 以比下壓能理論模式預估切削深度及達到預定溝槽深度之最少切削道次估算方法40 3.1 比下壓能理論模式建立預測切削深度及計算方法40 3.2 達到預定切削深度之最少切削道次估算方法47 第四章 準穩態分子靜力學奈米切削溫度模擬模式54 4.1 分子靜力學之基本原理54 4.1.1 分子作用力及勢能函數55 4.1.2 截斷半徑法61 4.1.3 虎克-吉夫斯(Hooke-Jeeves)搜尋法63 4.1.4 奈米級切削力之計算64 4.2 等效應變及等效應力計算方法68 4.2.1等效應變之計算68 4.2.2等效應力之計算72 4.3 被切削工件之熱源及提升溫度計算方法74 4.3.1 塑性變形熱之提升溫度計算方法75 4.3.2 摩擦熱之提升溫度計算方法76 4.3.3 考慮熱傳之有限差分法溫度分佈計算方法77 4.4 奈米切削模擬參數設定82 4.4.1奈米正交切削完美單晶銅工件之模擬參數設定82 4.4.2奈米切削藍寶石工件之刀具及工件模擬參數設定87 第五章 結果與討論91 5.1 以比下壓能預估切削深度之理論與實驗結果比較驗證91 5.2 達預定深度之最少切削道次估算結果與實驗結果比較100 5.3 準穩態分子靜力學奈米級切削模式模擬及計算正交切削單晶銅之溫度提升結果與探討105 5.3.1 模擬單晶銅材料奈米級正交切削之切削力驗證與比較105 5.3.2奈米等級正交切削單晶銅的等效應變與等效應力之分析111 5.3.3 模擬奈米級正交切削單晶銅之被切削工件溫度分佈驗證與比較118 5.3.4奈米正交切削單晶銅之不同熱源提升的溫度及最後溫度分佈分析123 5.3.5結合分子靜力學與熱傳有限差分法於奈米正交切削單晶銅之溫度分佈分析131 5.4 奈米級切削藍寶石V型溝槽之切削力和等效應力-應變之模擬計算結果與探討138 5.4.1 準穩態分子靜力學奈米切削藍寶石V型溝槽之切削力模擬結果140 5.4.2 奈米級切削藍寶石V型溝槽之下壓力模擬結果與應用比下壓能理論計算結果之驗證145 5.4.3 奈米級切削藍寶石V型溝槽的等效應變與應力分析146 5.5 奈米級切削藍寶石V型溝槽之切削溫度提升計算結果與探討151 5.5.1 奈米級切削藍寶石V型溝槽之不同熱源提升的溫度及最後溫度分佈分析151 5.5.2 結合分子靜力學與熱傳有限差分法於奈米切削藍寶石V型溝槽之溫度分佈分析176 第六章 結論185 6.1. 有關以比下壓能預估切削深度之理論模式與奈米級切削藍寶石V型溝槽之實驗探討方面185 6.2 有關以最少切削道次達預定切削深度探討方面186 6.3 有關結合準穩態分子靜力學於奈米級正交切削單晶銅之切削力與等效應變及等效應力探討方面187 6.4 有關奈米級正交切削單晶銅之切削溫度提升模擬計算探討方面188 6.5 有關結合準穩態分子靜力學於奈米切削藍寶石V型溝槽之切削力與等效應變及等效應力探討方面189 6.6 有關奈米級切削藍寶石V型溝槽之切削溫度提升模擬計算分析方面191 參考文獻193 作者簡介200

1.何怡帆,高世平, "我國奈米科技研究之規劃與推動概況", 自然科學簡訊,第十三卷第四期, pp. 125-129, (2001).
2.Binning, G., Quate,C. F. and Gerber C., “Atomic Force Microscope” , Physical Review Letters , Vol. 56, pp. 930-933 (1986).
3.Nanjo H., Nony L., Yoneya M. and Aime J. P., “Simulation of section curve by phase constant dynamic mode atomic force microscopy in non-contact situation” , Applied Surface Science, Vol. 210, No.5, pp. 49-53 (2003).
4.Lübben, J. F. and Johannsmann D., “Nanoscale high-frequency contact mechanics using an AFM tip and a quartz crystal resonator” , Langmuir, Vol. 20, No.9, pp. 3698-3703 (2004).
5.Komanduri, R., “Some aspects of machining with negative rake tools simulating grinding” , International Journal of Machine Tool Design and Research, Vol. 11, pp.223-233 (1971).
6.Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T.P., “Recent developments in tip-based nanofabrication and its roadmap” , Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).
7.Fang, T. H., Weng, C. I. and Chang, J. G., “Machining characterization of nano-lithography process by using atomic force microscopy” , Nanotechnology, Vol. 11, pp. 181-187 (2000).
8.Schumacher H. W., Keyser, U. F. and Zeitler, U., “Controlled mechanical AFM machining of two-dimensional electron systems: Fabrication of a single-electron transistor” , Physica E., Vol. 6, No.4, pp. 860-863 (2000).
9.Yan, Y.D., Sun, T., Liang, Y. C. and Dong, S., “Investigation on AFM based micro/nano CNC machining system” , International Journal of Machine Tools and Manufacture, Vol.47, No. 11, pp. 1651-1659 (2007).
10.Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces” , Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
11.Tseng, A. A., “A comparison study of scratch and wear properties using atomic force microscopy” , Applied Surface Science, Vol. 256, Issue 13, pp. 4246- 4252 (2010).
12.Lu, C., Mai, Y. W., Tam, P. L. and Shen, Y. G., “Nanoindentation-induced elastic-plastic transition and size effect in α-Al2O3 (0001) ” , Philosophical Magazine Letters Vol. 87, pp.409-415 (2007).
13.Lin, Z. C. and Huang, J. C., “The study of estimation method of cutting force for Conical Tool under Nanoscale Depth of Cut by Molecular Dynamics” , Nanotechnology, Vol. 19, pp.115701-1 ~115701-13 (2008).
14.Nga, C. K., Melkotea, S. N., Rahmanb, M. and Kumar, A.S., “Experimental study of micro- and nano-scale cutting of aluminum 7075-T6” , Machine Tools & Manufacture, Vol. 46, pp. 929-936 (2006).
15.Fang, F. Z., Wu, H. and Lin, Y. C., “Modeling and experimental investigation on nanometric cutting of monocrystalline silicon” , International Journal of Machine Tools and Manufacture, Vol. 45, Issue 15, pp. 1681-1686 (2005).
16.Ogino, T., Nishimura, S. and Shirakashi, J., “Scratch Nanolithography on Si Surface Using Scanning Probe Microscopy: Influence of Scanning Parameters on Groove Size” , Jpn. J. Applied Physics. Vol. 47, No.1, pp. 712- 714 (2008).
17.Chen Y. J., Hsu, J. H. and Lin, H. N., “Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process” , Nanotechnology, Vol. 16, pp.1112-1115 (2005).
18.Tseng, A. A., Shirakashi, J., Nishimura, S., Miyashita, K. and Notargiacomo, A., “Scratching properties of nickel-iron thin film and silicon using atomic force microscopy” , J. Applied Physics, Vol. 106, No. 4, 044314 (2009).
19.Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics” , J. Chem. Phys., Vol. 18, pp. 817-829 (1950).
20.Maekawa, K. and Itoh, A., “A Friction and Tool Wear in Nano-scale Machining - a Molecular Dynamics Approach” , Wear, Vol. 188, pp.115-122 (1995).
21.Zhang, L. C. and Tanaka, H., “Towards a Deeper Understanding of Wear and Friction on the Atomic Scale - a Molecular Dynamics Analysis” , Wear, Vol. 211, pp. 44-53 (1997).
22.Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process” , Proc. Am. Soc. Precision Eng., pp.76-79 (1990).
23.Belak, J., Boercker, D. B. and Stowers, I. F., “Simulation of Nanometre-scale Deformation of Metallic and Ceramic Surfaces” , Mater. Res. Soc. Bull., Vol. 18, pp.55-60 (1993).
24.Ikawa, N., Shimada, S., Tanaka, H. and Ohmori, G., “An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-work Interaction in Diamond Turning” , Ann. CIRP, Vol 40, No.1, pp.551-554 (1991).
25.Shimada, S., Ikawa, N., Ohmori, G. and Tanaka, H., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining” , Ann. CIRP, Vol. 41, No. 1, pp.117-123 (1992).
26.Shimada, S., Ikawa, N., Tanaka, H., Ohmori, G., Uchikoshi, J. and Yoshinaga, H., “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation” , Ann. CIRP, Vol. 42, No.1, pp.91-94 (1993).
27.Shimada, S., Ikawa, N., Tanaka, H. and Uchikoshi, J., “Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis” , Ann. CIRP, Vol. 43, No.1, pp. 51-54 (1994).
28.Shimada, S., “Molecular Dynamics Analysis of Nanometric Cutting Process” , Int. J. Jpn. Soc. Precis. Eng., Vol. 29, No.4, pp. 283-289 (1995).
29.Shimizu, J., Eda, H., Yoritsune, M. and Ohmura, E., “Molecular Dynamics Simulation of Friction on the Atomic Scale” , Nanotechnology, Vol. 9, pp.118-123 (1998).
30.Isono, Y. and Tanaka, T., “Three-dimensional Molecular Dynamics Simulation of Atomic Scale Precision Processing Using a Pin Tool” , JSME Int. J. Ser. A: Mech. Mater. Eng., Vol. 40, No.3, pp. 211-218 (1997).
31.Isono, Y. and Tanaka, T., “Molecular Dynamics Simulation of Atomic Scale Indentation and Cutting Process with Atomic Force Microscope” , JSME Int. J. Ser. A: Mech. Mater. Eng., Vol. 42, pp. 158-162 (1999).
32.Fang, T. H. and Weng, C. I., “Three Dimensional Molecular Dynamics Analysis of Processing Using a Pin Tool on the Atomic Scale” , Nanotechnology, Vol. 11, pp.148-153 (2000).
33.Fang, T. H., Weng, C. I. and Chang, J. G., “Molecular Dynamics Simulation of Nano-lithography Process Using Atomic Force Microscopy” , Surface Science, Vol. 501, pp.138-147 (2002).
34.Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining” , Ann. CIRP , pp. 117 - 120 (1990).
35.Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” , Wear , pp.235-250 (1990).
36.Kim, J. D., Moon and C. H., “A study on microcutting for the configuration of tools using molecular dynamics” , Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
37.Fang, F.Z., Wu, H., Zhou, W. and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon” , Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
38.Pei, Q..X., Lu, C., Fang, F.Z. and Wu, H., “Nanometric cutting of copper: A molecular dynamics study” , Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
39.Ikawa, N., Shimada, S., Tanaka, H. and Ohmori, G., “An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning” , Annals of the CIRP, Vol. 40, No. 1, pp. 551-554 (1991).
40.Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool” , Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, pp. 259-266 (1991).
41.Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond” , Annals of the CIRP, Vol. 41, Issue 1, pp. 121-124(1992) .
42.Inamura, T., Takezawa N. and Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting” , Annals. CIRP, Vol.42, No.1, pp.79-82 (1993).
43.Inamura, T., Takezawa, N., Kumaki, Y. and Sata, T., “On a Possible Mechanism of Shear Deformation in Nanoscale Cutting” , Ann. CIRP, Vol.43, No.1, pp. 47-50. (1994).
44.Lin, Z. C.; Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique” , Nanotechnology, PP. 510-519 (2004).
45.Cai, M. B.; Li, X. P. and Rahman, M., “Study of the Temperature and Stress in Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation” , Journal of Materials Processing Technology , Vol. 192–193, pp.607–612 (2007).
46.Vinogradov, O., “A new method of molecular statics in pdycrystals applications” , Computional Material Science, Vol. 39, 611-615 (2007).
47.Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems” , Computers and Structures,Vol. 82, September/October, Computational Structures Technology, pp. 1993-2000 (2004).
48.Igor, Ye.; Telitchev and Oleg Vinogradov, “A method for quasi-static analysis of topologically variable lattice structures” , International Journal of Computational Methods, Vol. 126, pp. 71-81 (2006).
49.Jeng, Y. R. and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model” , Journal of Tribology, Vol. 126, pp. 767-774 (2004).
50.陳雨樵,「以分子模擬方法研究奈米線之機械性質」,碩士論文,國立中正大學機械工程研究所,嘉義 (2006)。
51.黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,博士論文,國立台灣科技大學大學機械工程研究所,台北 (2006)。
52.Lin, Z. C. and Ye, J. R., “Quasi-steady Molecular statics Model For simulation of Nanoscale Cutting with different Diamond Cutters” , Computer Modeling in Engineering &Sciences, Vol.50, No.3, pp. 227-252 (2009).
53.Guo, Y. B.; Liang, Y. C.; Chen, M. J.; Bai, Q. S. and Lu, L. H., “Molecular dynamics simulations of thermal effects in nanometeric cutting process” , Sci China Ser E-Tech Sci, Vol. 53, No.3, pp.870-874 (2010).
54.Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation-” , Annals CIRP: Ann-Manuf Technol, Vol. 55, No. 1,pp. 601-604 (2006).
55.Ermer, D. S., “Optimization of the constrained machining economics problem by geometric programming” , Transactions of ASME Journal of Engineering for Industry, Vol. 93, pp. 1067-1072, (1971).
56.Chen, M.C. and Tsai, D. M., “A simulated annealing approach for optimization of multipass turning operations” , International Journal of Production Research, Vol. 34, pp. 2803-2825, (1996).
57.Shunmugam, M. S., Bhaskara, S. V. and Narendran, T. T., “Selecion of optimal conditions in multi-pass face-milling using a genetic algorithm” , International Journal of Machine Tools and Manufacture, Vol. 40, pp.401-414, (2000).
58.Satishkumar, S., Asokan P. and Kumanan S., “Optimization of depth of cut in multi-pass turning using nontraditional optimization technology” , International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 230-238, (2006).
59.Sezgi Özen and G. Mirac Bayhan, “Optimization of depth of cut in multi-pass machining using Hopfield type neural networks” , Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, January, pp. 22-24,(2011).
60.E. R. Dobrovinskaya, L. A. Lytvynov and V. Pishchik, Sapphire: Material, Manufacturing, Applications, Springer, New York, (2009).
61.D. Sarid, Scanning Force Microscopy, Oxford University Press, New York (1991).
62.Huang, W. S., “Experiment and Analysis of Chemical Mechanical Polishing of Sapphire Wafer”, Master thesis, National Taiwan University of Science and Technology, Taipei, Taiwan ( 2010).
63.Digital Instruments, Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrilogy Group, (2000).
64.Michaei, R., “Nano-engineering in science and technology: an introduction to the world of world of nano-design” , World Scientific Publishing Co., Inc. NJ,US , (2003).
65.Girifalco, L. A . and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals” , Phys. Rev., Vol. 114, pp. 687-690 (1959).
66.Graves, D.B., and Brault, P., “Molecular Dynamics for Low Temperature Plasma-Surface Interaction Studies” , Journal of Physics D: Applied Physics, Nov,11, hal-00338180, Vol. 1-11, pp.1-88, (2008).
67.Maekawa, K. and A. Itoh, “A Friction and Tool Wear in Nano-scale Machining - a Molecular Dynamics Approach” , Wear, Vol. 188, pp.115-122 (1995).
68.Imafuku, M., Sasajima, Y., Yamamoto, R. and Doyama, M., “Computer simulations of the structures of the metallic superlattices Ad/Ni and Cd/Ni and their elastic moduli” , Journal of Physics F: Metal Physics, Vol. 16 , No. 7, pp. 823- 829 (1986).
69.Reklaitis, G. V., Engineering Optimization: Methods and Application, John Wiley, New York (1983).
70.Lin, Z. C. and Huang, J. C., “3D Nano-scale Cutting Model for Nickel Material” , Journal of Materials Processing Technology, pp.27–36 (2007).
71.Rau, J. S., “A Study on Mechanical Problems of Nanoscopic Micro-structures by Molecular Dynamics Theory” , Ms. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Taiwan (1999).
72.Sandip, B., “On Spherical Nanoindentation Stress-Strain Curves, Creep and Kinking NonlinearElasticity in Brittle Hexagonal Single Crystals” , Ph.D. Thesis, Drexel University, USA (2008).
73.Lin, Z.C., Pan,W. C. and Lo, S. P., “A Study of Orthogonal Cutting with Tool Flank Wear and Sticking Behavior on the Chip-Tool Interface”, Journal of Materials Processing Technology, Vol.52, No.2-4, pp.524-538 (1995).
74.James F. Shackelford, “ Introduction to Materials Science for Engineers ”, Macmillan Inc., N.Y., PP. 93-94(1988).

QR CODE