簡易檢索 / 詳目顯示

研究生: 黃鴻志
Hong-Jhih Huang
論文名稱: P-型尖晶石結構氧化鈷及氧化鈷銅薄膜之沉積及特性分析
Growth and characterization of p-type spinel cobalt oxide and copper-cobalt oxide thin films
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 李志堅
Chih-Chien Lee
李奎毅
Kuei-Yi Lee 
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 氧化鈷氧化鈷銅反應式離子束濺鍍光電流薄膜
外文關鍵詞: cobalt oxide, copper-cobalt oxide, reactive ion beam sputter deposition, photo-current, thin film
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功利用陽極層離子源之反應式離子束濺鍍沉積氧化鈷與氧化鈷銅薄膜,薄膜分別於製程溫度150℃與300℃下以不同氧氣流量比沉積於矽基板與石英基板上,實驗結果顯示,於150℃下沉積之薄膜皆屬非晶薄膜,而在300℃下沉積之氧化鈷與氧化鈷銅薄膜形成尖晶石結構,當氧氣流量增加時會導致薄膜結晶性變差且電阻率下降,摻雜銅後亦會造成薄膜結晶性劣化且電阻率下降,穿透光譜顯示摻雜銅會導致帶間缺陷的形成,光電化學測量結果顯示氧化鈷及氧化鈷銅皆為P型半導體,其中氧化鈷銅薄膜表現出最高的光電流密度,其原因為摻銅後會增加光子吸收進而改善帶間缺陷所致。


    Cobalt oxide and copper-cobalt oxide thin films have been successfully deposited by reactive ion beam sputter deposition utilizing an anode layer ion source sputtering module. Samples were deposited at 150 and 300℃ at various oxygen flow rates on both Si and quartz substrates. Experimental results show that samples deposited at 150℃ are all amorphous, while both cobalt and copper-cobalt oxide deposited at 300℃ exhibit a spinel structure. Increasing oxygen partial flow rates results in deteriorated crystalline quality and reduced resistivity, while the introduction of copper also results in deteriorated crystalline quality and reduced resistivity. Transmission spectra indicate that copper results in the formation of inter-band defect states. Photoelectrochemical measurements show that both cobalt and copper-cobalt oxide are of p-type, while copper-cobalt oxide shows the highest photocurrent density. This improved photocurrent density is attributed due to the presence of inter-band states that results in improved absorption of photons.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言及研究動機 第二章 文獻回顧 2-1 離子束濺鍍原理 2-1-1 濺鍍原理 2-1-2 反應式濺鍍 2-1-3 離子束濺鍍 2-2 薄膜沉積原理介紹 2-2-1 薄膜沉積現象 2-2-2 薄膜成長方式 2-3 氧化鈷介紹與文獻回顧 2-3-1 氧化鈷特性 2-3-2 氧化鈷( CoO ) 2-3-3 四氧化三鈷( Co3O4 ) 2-4 氧化鈷銅介紹與文獻回顧 2-4-1 CuxCo3-xO4結構介紹 2-5 光電流文獻回顧 第三章 實驗流程與儀器介紹 3-1 實驗流程 3-2 薄膜分析儀器 3-2-1 場發射掃描式電子顯微鏡(FESEM) 3-2-2 能量散射光譜儀(EDS) 3-2-3 X-ray繞射分析(XRD) 3-2-4 拉曼光譜儀(Raman) 3-2-5 光電流量測 3-2-6 四點探針量測 3-2-7 穿透率量測 第四章 實驗結果與討論 4-1 FESEM 分析 4-2 EDS 元素成分分析 4-3 XRD 繞射分析 4-4 Raman 光譜分析 4-5 電阻率量測 4-6 光學性質量測 4-6-1 穿透率與能隙量測 4-6-2 光電流量測 第五章 結論與未來展望

    [1] S. Trasatti, “ Electrocatalysis : understanding the success of DSA,”Electrochimca. Acta, Vol. 45, pp. 2377–2385, 2000.
    [2] H. J. Liu, S. H. Bo, W. J. Cui, F. Li, C. X. Wang, and Y. Y. Xia, “Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries, ”Electrochimca. Acta, Vol. 53, pp. 6497-6503,2008.
    [3] Q. W. Li, G. A. Luo, and Y. Q. Shu, “Response of nanosized cobalt oxide electrodes as pH sensors, ”Anal. Chim. Acta, Vol. 409, pp. 137-142, 2000.
    [4] J. Feng, and H. C. Zeng, “Size-controlled growth of Co3O4 nanocubes, ”Chem. Mater, Vol. 15, pp. 2829-2835, 2003.
    [5] A. Gulino, P. Dapporto, P. Rossi, and I. Fragala, “A novel self-generating liquid MOCVD precursor for Co3O4 thin films, ”Chem. Mater., Vol. 15, pp. 3748-3752, 2003.
    [6] V. Patil, P. Joshi, M. Chougule, and S. Sen, “Synthesis an characterization of Co3O4 thin film, ”Soft Nanoscience Letters, Vol. 2, pp. 1-7, 2012.
    [7] A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, and H. Erguig, “Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer, ”J. Alloys Compd., Vol. 509, pp. 9183-9189, 2011.
    [8] A. L. Rosa-Toro, R. Berenguer, C. Quijada, F. Montilla, E. Morallon, and J. L. Vazquez, “Preparation an characterization of copper-doped Cobalt Oxide Electrodes, ”J. Phys. Chem. B, Vol. 110, pp. 24021-24029, 2006.
    [9] G. Zhou, Y. Jiang, H. Xie, and F. Qiu, “Non-noble metal catalyst for carbon monoxide selective oxidation in excess hydrogen, ”Chem. E. J., Vol. 109, pp. 141-145, 2005.
    [10] A. Avila G, E. Barrera C, L. Huerta A, and S. Muhl, “Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis, ”Sol. Energy. Mater. Sol. Cells., Vol.82, pp. 269-278, 2004.
    [11] L. D. Kadam,and P. S. Patil, “Step potential analysis of cobalt oxide-based electrochromic devices, ”Sol. Energy. Mater. Sol. Cells., Vol. 70, pp. 15-23, 2001.
    [12] H. Yang, Y. Hu, X. Zhang, and G. Qiu, “Mechanochemical synthesis of cobalt oxide nanoparticles, ”Mater. Lett., Vol. 58, pp. 387-389,2004.
    [13] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., Vol. 142, pp. 87-101, 1852.
    [14] I. Langmuir, and L. Tonks, “Oscillations in ionize gases,” Proc. Natl. Acad. Sci. USA, Vol. 14, pp. 627, 1928.
    [15] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepare in high vacuum by ion beam sputtering,” Appl. Surf. Sci., Vol. 171, pp. 151-156, 2001.
    [16] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, Vol. 117, pp. 163-172, 1984.
    [17] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr ,Ti)O3 thin films, ” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
    [18] S. M. Kaneand, K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J.
    Vac. Sci. Technol., Vol. 16, No. 2, pp. 171-174, 1979.
    [19] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepare by ion beam sputter deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
    [20] C. C. Lee, J. C. Hsu, D. T. Wei, and J.H. Lin, “Morphology of dual beam ion sputtered films investigate by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
    [21] C. Argile, G. E. Rhead, “Absorbed layer and thin film growth modes monitored by augur electron spectroscopy, ”Surf. Sci. Rep., Vol. 10, No. 6-7, pp.277-356, 1989.
    [22] L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, pp. 1-5, 1993.
    [23] M. Ohring, “The materials science of thin films,” Academic Press, Boston, p.197,
    1992.
    [24] 黃進發,“三價氧化鈷的製備與特性鑑定,”國立清華大學碩士論文, 2001.
    [25] W. Wang, an G. Zhang, “Synthesis an optical properties of high-purity CoO nanowires prepare by an environmentally friendly molten salt route,” J. Cryst. Growth, Vol. 311, pp. 4275-4280, 2009.
    [26] M. Hamdani, R. N. Singh, and P. Chartier, “Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes,” Int. J. Electrochem. Sci., Vol. 5, pp. 556-557, 2010.
    [27] B. Huang, Y. I. Jang, Y. M. Chiang, and D.R. Sadoway, “ Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications,” J. Appl. Electrochem., Vol. 28, pp.1365-1369, 1998
    [28] S. Vetter, S. Haffer, T. Wagner, and M. Tiemann, “Nanostructure Co3O4 as a CO gas sensor: temperature- dependent behavior,” Sens. Actuators, B:Chemical, Vol. 206, pp. 133-138, 2015.
    [29] S. K. Meher, and G. R. Rao, “Ultralayere Co3O4 for high-performance supercapacitor applications, ” J. Phys. Chem. C., Vol. 115, pp. 15646-15654, 2011.
    [30] G. A. Ali, O. A. Fouad, and S. A. Makhlouf, “Structural, optical and electrical properties of sol-gel prepared mesoporousCo3O4/SiO2nanocomposites, ”J. Alloys. Compd., Vol. 579, pp. 606-611, 2013.
    [31] P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films, ”Thin Solid Films, Vol. 272, pp. 29-32, 1996.
    [32] A. L. Rosa-Toro, R. Berenguer, C. Quijada, F. Montilla, E. Morallon, and J. L. Vazquez, “Preparation an characterization of copper-doped Cobalt Oxide Electrodes, ”J. Phys. Chem. B, Vol. 110, pp.24021-24029, 2006.
    [33] Mathieu De Koninck, Simon-Claude Poirier, and Benoît Marsan, “CuxCo3−xO4 Used as Bifunctional Electrocatalyst of Physicochemical properties and electrochemical characterization for the oxygen evolution reaction, ”Journal of The Electrochemical Society, Vol. 153, pp. A2103-A2110, 2006.
    [34] Peng Wang, Hao Wu, Yiming Tang, Rose Amal, and Yun Hau Ng “Electrodeposited Cu2O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion” J. Phys. Chem. Vol. 119, pp. 26275−26282, 2015
    [35] Hadjiev V. G., Iliev, M. N., Vergilov I. V., “The Raman spectra of Co3O4, ” Journal of Physics C: Solid State Physics, Vol.21, L199, 1998.
    [36] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S.J. Young, and B. R. Huang, “A CuO nanowire infrared photodetector,” Sens. Actuators, A, Vol. 171, pp. 207-211, 2011.
    [37] H. Gao, J. Zhang, M. Li, K. Liu, D. Guo, and Y. Zhang, “Evaluating the electric property of different crystal faces and enhancing the raman scattering of Cu2O microcrystal by depositing Ag on the surface,” Curr. Appl. Phys., Vol. 13, pp. 935-939, 2013.
    [38] H. Solache-Carranco, G. Juarez-Diaz, A. Esparza-Garcia, M. Briseno-Garcia, M. Galvan-Arellano, J. Martinez-Juarez, G. Romero-Paredes, and R. Pena-Sierra, “Photoluminescence and X-ray diffraction studies on Cu2O,”J. Lumin., Vol. 129 , pp.1483-1487, 2009.
    [39] J. J. Ma, H. J. Wang, X. Yang, Y. Q. Chai, and R. Yuan, “Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries, ”J. Master. Chem. A, Vol. 3, pp. 12038-12043, 2015.

    無法下載圖示 全文公開日期 2022/04/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE