簡易檢索 / 詳目顯示

研究生: 廖呈豪
Cheng-Hao Liao
論文名稱: 實驗室壓實法對瀝青混合料體積與績效特性之影響
Effect of Laboratory Compaction Process on Volumetric Properties and Performance Characteristics of Asphalt Mixtures
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Jian-Shiuh Chen
蘇育民
Yu-Min Su
陳君弢
Chun-Tao Chen
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 馬歇爾壓實Superpave旋轉壓實間接張力開裂間接張力車轍Francken 模型高溫間接張力試驗
外文關鍵詞: Marshall-compacted, SGC-compacted, IDEAL-CT, IDEAL-RT, Francken model, HT-IDT
相關次數: 點閱:171下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性鋪面是世界上應用最廣泛的道路類型之一,主要使用瀝青混凝土(Asphalt Concrete, AC)作為鋪面材料。它廣泛應用於各種場所,包括住宅街道、高速公路、停車場、自行車道和機場跑道等。在早期馬歇爾壓實法是一種廣泛應用的瀝青混凝土設計方法,優點在於其簡單易行,能夠提供準確的瀝青含量和混合料基本性能評估。然而,隨著技術的發展和需求的變化,近年來出現了其他更現代化和先進的混合料設計方法,如Superpave(Superior Performing Asphalt Pavements)設計法,其旋轉揉壓的壓實方式也較貼近現地的滾壓壓實方式。本研究針對高分子改質密級配瀝青混凝土,使用馬歇爾衝擊壓實法以及Superpave旋轉壓實法尋求各自的最佳瀝青含量,後續並進行間接張力試驗(IDT)、間接張力開裂試驗(IDEAL-CT),間接張力車轍試驗(IDEAL-RT),以及車轍輪跡試驗(WTT)。本研究比較了馬歇爾壓實法和SGC壓實法在柔性鋪面設計中的差異,結果顯示,當製作直徑150 mm及較高高度(95mm)之配比設計試體時(製作4%孔隙率),馬歇爾壓實法在不同瀝青含量下的孔隙率差異較大,導致最佳瀝青含量計算偏高。然而,在製作直徑150 mm及較低之績效試驗試體高度(62mm)時(製作7%孔隙率試體),以馬歇爾壓實法則仍可控制並接近正常孔隙率標準,推測是因為製作較高試體高度時,試體用料量大,即便提升夯實能量仍無法達到目標孔隙率,僅能透過提升瀝青含量而達成。另外,抗開裂性能在壓實方式和瀝青含量上有所不同,5%瀝青含量的馬歇爾壓實試體的抗開裂指數(CTindex)均低於規範值31,這意味著馬歇爾壓實法會使試體的脆性提高,而5%瀝青含量的SGC壓實試體則在規範值範圍內。此外,壓實方式對於高溫間接張力強度(HT-IDT)結果沒有明顯影響,但較高瀝青含量的試體顯示出明顯下降趨勢。在綜合比較不同壓實方式對於抗開裂指數和間接張力車轍與車轍輪跡試驗的關係時,可以觀察到CTindex越低則RTindex值越高,車轍的深度越小。此外,三種不同試體都達到了RTindex建議值72;車轍輪跡試驗顯示,不同壓實方式對車轍深度有影響,濕式5%瀝青含量的馬歇爾壓實試體車轍深度大於5%瀝青含量SGC壓實試體,而5.5%瀝青含量的馬歇爾壓實試體則最深。綜合比較抗開裂指數和間接張力強度的關係,間接張力強度越高,抗開裂指數越低。最後,Francken model擬合結果顯示,5%瀝青含量的馬歇爾壓實試體剝脫點最大,其次是5%瀝青含量的SGC壓實試體,最後是5.5%瀝青含量的馬歇爾壓實試體。總體而言,研究結果表明SGC壓實法在某些性能方面具有優勢,對於鋪面配比設計和性能評估具有重要參考價值,但以馬歇爾壓實方法製作績效試驗試體(7%孔隙率)依舊還是可以使用。


    Asphalt concrete is a crucial component of flexible pavement, a popular road type worldwide. Asphalt concrete can be designed using different mix design approaches. The traditional Marshall method, utilized in Taiwan, is simple, precise, and capable of evaluating basic performance. However, it doesn't accurately reflect field conditions. In recent years, more cutting-edge mixture design techniques have emerged, such as the Superpave (Superior Performing Asphalt Pavements) design method, which employs a gyratory compaction method that accurately simulates field rolling compaction. This study compared polymer-modified dense-graded asphalt concrete designed using Marshall impact and Superpave gyratory compaction methods. The comparison is based on volumetric properties and mechanical performance. The performance tests utilized in the study were indirect tension tests (IDT), indirect tension cracking tests (IDEAL-CT), moisture damage resistance, indirect tension rutting tests (IDEAL-RT), and wheel tracking tests (WTT). The IDEAL-CT test indicated asphalt concrete's response to cracking, and the IDEAL-RT and WTT tests were conducted to evaluate permanent deformation resistance. The result revealed that distinctions in cracking resistance were observed between the compaction methods and asphalt contents. Marshall-compacted specimens with 5% asphalt content exhibited a CTindex below the specified threshold value, indicating less flexibility for cracking resistance. In contrast, SGC-compacted specimens with 5% asphalt content remained within the specified range. The compaction method did not significantly affect HT-IDT and IDEAL-RT results, but specimens with more asphalt showed a noticeable decrease in rutting resistance. The wheel tracking tests showed that different ways of compacting affected the depth of the rutting performance; Marshall-compacted samples with 5% asphalt content rutted less than SGC-compacted samples with the same asphalt content. Additionally, Marshall-compacted specimens with 5.5% asphalt content exhibited the greatest depth. When indirect tension rutting and wheel tracking tests were used to look at the relationship between compaction methods and resistance to cracking, lower CTindex values were linked to higher RTindex values and shallower rut depths. In terms of moisture damage resistance, Marshal compaction showed higher resistance than gyratory compacted specimens. Overall, the research findings highlight the advantages of the SGC compaction method in certain performance aspects, offering valuable insights for pavement mixture design and performance evaluation. However, the Marshall compaction method remains suitable for producing performance test specimens targeting a void ratio of 7%.

    目錄 摘要 i ABSTRACT iii 致謝 vi 目錄 vii 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 傳統馬歇爾壓實以及配比設計 4 2.2 Superpave配比設計 4 2.3 瀝青鋪面壓實度與空隙率 5 2.4 馬歇爾壓實與Superpave壓實方式比較 7 2.5 瀝青混合料績效試驗 11 2.5.1 間接張力開裂試驗(IDEAL-CT) 11 2.5.2 間接張力車轍試驗 (IDEAL-RT) 12 2.5.3 漢堡輪跡試驗 15 2.5.4 Francken model數據擬合 17 2.5.5 水侵害試驗 19 第三章 研究計畫 21 3.1 試驗範圍 21 3.2 研究流程 21 3.3 試驗材料 23 3.3.1 天然粒料 23 3.3.2 瀝青膠泥 24 3.3.3 填充料 24 3.4 瀝青試驗方法 25 3.4.1 軟化點試驗-環球法 25 3.4.2 瀝青比重試驗 26 3.4.3 針入度試驗 27 3.4.4 黏滯度試驗 30 3.5 粒料測定方法 32 3.5.1 篩分析試驗 32 3.5.2 粗粒料比重和吸水率試驗 33 3.5.3 細粒料比重和吸水率試驗 35 3.5.4 粗粒料扁平、細長或扁長顆粒含量試驗 37 3.5.5 粗粒料破碎顆粒含量試驗 39 3.5.6 石粉比重試驗 41 3.6 瀝青混和料試驗方法 42 3.6.1 配比設計 42 3.6.2 最大理論比重試驗 47 3.6.3 間接張力開裂試驗 48 3.6.4 間接張力強度試驗 50 3.6.5 間接張力車轍試驗 51 3.6.6 抗張強度試驗 53 3.6.7 車轍輪跡試驗 54 3.6.8 高溫間接張力試驗 55 第四章 結果與分析 56 4.1 材料基本性質 56 4.1.1 天然粒料基本性質 56 4.1.2 瀝青基本性質 58 4.2 瀝青混凝土配比設計 61 4.2.1 馬歇爾配比設計 61 4.2.2 製作績效試驗試體前導試驗 68 4.3 瀝青混凝土不同壓實方法之績效試驗 71 4.3.1 間接張力強度試驗 71 4.3.2 間接張力開裂試驗 73 4.3.3 高溫間接張力強度試驗 74 4.3.4 間接張力車轍試驗 75 4.3.5 水侵害試驗-間接張力強度 76 4.3.6 水侵害試驗-抗開裂指數 77 4.3.7 車轍輪跡試驗 78 4.4 績效試驗綜合比較 79 4.4.1 間接張力強度與抗開裂指數比較 79 4.4.2 浸水前後間接張力強度比較 80 4.4.3 浸水前後抗開裂指數比較 82 4.4.4 抗開裂指數與間接張力車轍比較 83 4.4.5 高溫間接張力與車轍輪跡比較 84 4.4.6 高溫間接張力與間接張力車轍比較 85 4.4.7 間接張力車轍與車轍輪跡比較 86 4.4.8 車轍輪跡數據擬合 87 4.4.9 壓實方式與疲勞參數的關係 92 第五章 結論與建議 94 5.1 結論 94 5.2 建議 96 參考文獻 97

    Ahmad, J., Yusoff, N. I. M., Hainin, M. R., Abd Rahman, M. Y. & Hossain, M. (2014). Investigation into hot-mix asphalt moisture-induced damage under tropical climatic conditions. Construction and Building Materials, 50, 567-576.
    Ahmed, N. G. & Ismail, N. M. (2009). Comparative evaluation for mix design of Marshall and Superpave methods. Journal of Engineering and Sustainable Development, 13(2), 162-181.
    Asi, I. M. (2007). Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions. Construction and Building Materials, 21(8), 1732-1740.
    Asphalt Institute. (2014). MS-2 Asphalt Mix Design Methods.
    Bahia, H. U., Hanson, D. I., Zeng, M., Zhai, H., Khatri, M. A. & Anderson, R. M. (2001). Characterization of modified asphalt binders in superpave mix design, Report 459, NCHRP, National Academy Press, Washington DC.
    Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D. & Ozbulut, O. E. (2022). A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures. Construction and Building Materials, 335, 127484.
    Boz, I., Habbouche, J., Diefenderfer, S. D., Coffey, G. P., Ozbulut, O. E., & Seitllari, A. (2023). Simple and Practical Tests for Rutting Evaluation of Asphalt Mixtures in the Balanced Mix Design Process, Final Report VTRC 23-R11, Virginia Transportation Research Center, Charlottesville, VA.
    Brown, E. R., Kandhal, P. S., Roberts, F. L., Kim, Y. R., Lee, D. Y. & Kennedy, T. W. (2009). Hot mix asphalt materials, mixture design, and construction. NAPA research and education foundation.
    Chowdhury, P. S., Noojilla, S. L. A. & Reddy, M. A. (2022). Evaluation of fatigue characteristics of asphalt mixtures using Cracking Tolerance index (CTIndex). Construction and Building Materials, 342, 128030.
    Cominsky, R. J., Huber, G. A., Kennedy, T. W. & Anderson, M. (1994). The superpave mix design manual for new construction and overlays, SHRP-A-407, Strategic Highway Research Program, Washington, DC.
    Giwa, I., Sadek, H. & Zaremotekhases, F. (2021). Evaluation of different analysis approaches for Hamburg Wheel-Tracking testing (HWTT) data. Construction and Building Materials, 280, 122420.
    Jasim, F. I. (2012). Comparison between marshall and superpave mixtures design. Al-Qadisiyah Journal for Engineering Sciences, 5(4), 394-406.
    Jitsangiam, P., Chindaprasirt, P. & Nikraz, H. (2013). An evaluation of the suitability of SUPERPAVE and Marshall asphalt mix designs as they relate to Thailand’s climatic conditions. Construction and Building Materials, 40, 961-970.
    Khan, Z. A., Wahab, H. I. A. A., Asi, I. & Ramadhan, R. (1998). Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction. Construction and Building Materials, 12(6-7), 373-384.
    Li, Y., Jiang, W., Shan, J., Li, P., Lu, R. & Lou, B. (2021). Characteristics of void distribution and aggregate degradation of asphalt mixture specimens compacted using field and laboratory methods. Construction and Building Materials, 270, 121488.
    Linden, R. N., Mahoney, J. P. & Jackson, N. C. (1989). Effect of compaction on asphalt concrete performance. Transportation Research Record, 1217, 20-28.
    McGennis, R. B., Anderson, R. M., Kennedy, T. W. & Solaimanian, M. (1994). Background Of Superpave Asphalt Mixture Design & Analysis. Final Report, No. FHWA-SA-95-003, Federal Highway Administration, Washington,DC.
    Strategic Highway Research Program (1996). Superpave manual series 2 (SP-2), National Research Council, USA.
    Wang, J. N., Yang, C. K. & Luo, T. Y. (2001). Mechanistic analysis of asphalt pavements, using superpave shear tester and Hamburg wheel-tracking device. Transportation Research Record, 1767(1), 102-110.
    Zhao, X., Niu, D., Zhang, P., Niu, Y., Xia, H. & Liu, P. (2022). Macro-meso multiscale analysis of asphalt concrete in different laboratory compaction methods and field compaction. Construction and Building Materials, 361, 129607.
    Zhou, F., Hu, S. & Newcomb, D. (2020). Development of a performance-related framework for production quality control with ideal cracking and rutting tests. Construction and Building Materials, 261, 120549.
    Zumrawi, M. M. & Edrees, S. A. S. (2016). Comparison of Marshall and Superpave asphalt design methods for Sudan pavement mixes. International Journal of Scientific and Technical Advancements, 2(1), 29-35.

    QR CODE