簡易檢索 / 詳目顯示

研究生: 劉子維
Tzu-Wei Liu
論文名稱: 使用三電感耦合變壓器與八字型電感設計之壓控振盪器
Design of VCOs with a Trifilar Transformer and an 8-shaped Inductor
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
張珈瑋
Chia-Wei Chang
徐茂修
Mao-Hsiu Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 109
中文關鍵詞: 壓控振盪器八字電感電感等效模型八字電感電感等效模型注入鎖定除頻器
外文關鍵詞: Voltage-Controlled Oscillator, 8-shaped Inductor, 8-shaped Inductor Circuit Model, Injection-Locked Frequency Divider
相關次數: 點閱:471下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著無線通訊領域發展,各種晶片與其相關電路不斷湧現,為無線通訊帶來了更多的應用的可能性和發展前景,同時在製程尺度微縮下,更多電路及系統將會被更有效被整合在同一晶片。然而,科技的進步也帶來了相應的挑戰,有效整合這些不同操作時脈的子電路成了一大難題。由於電路與電路之間有不同的操作時脈,因此在運行過程中出現的時脈誤差,可能導致資料產生偏差,進而出現不正確地傳輸,這對系統的穩定性及整體性能構成了潛在威脅。在這樣情況下,鎖相迴路成為了解答,藉由同一個鎖相迴路產生的操作時脈直接或經由除頻器與其他電路進行同步,並確保子電路間能夠在彼此相對應的時間運作,從而將正確的資料進行數據。
鎖相迴路由大多由以下電路組成,相位偵測器(PD)或相位頻率偵測器(PFD)、充電汞(CP)、迴路濾波器(LF)、壓控振盪器(VCO)以及除頻器(FD)。相位偵測器或相位頻率偵測器作為第一個部件,比較出參考信號與回授信號的相位差並生成一個輸出信號,充電汞與迴路濾波器根據前一級相位頻率偵測器產生的相位差信號產生電流脈衝,經過迴路濾波器產生一個平滑的控制電壓,控制壓控振盪器產生輸出並經過除頻器回授至相位頻率偵測器,藉由各個部件不斷追蹤參考信號,最終將完成輸出穩定信號的功能。
本論文將著重於鎖相迴路兩個關鍵元件上,壓控振盪器(VCO)和注入鎖定除頻器(ILFD)。這兩個元件的性能和設計對於整個鎖相迴路的功能至關重要,因此我們將深入探討VCO及ILFD的設計原理,分享最佳實踐,並探討兩者對於鎖相迴路的功能影響。本篇論文將分為主向兩大項目,前三章節為VCO及ILFD的介紹設計並探討其工作原理,後三章節為VCO及ILFD電路模擬、量測與結論。
首先,第六章節著重於介紹一個三電感耦合變壓器互補式壓控震盪器,此架構使用TSMC 0.18 μm CMOS製程工藝設計和模擬。首先模擬VCO特性,再利用所繪製的電感佈局萃取電感s參數,後將取得的電感特性帶回VCO中進行模擬,以評估VCO的性能。在此章節我們將深入探討VCO的設計理念、原理,模擬測試以及實際的量測結果。此架構主電路由一個主電感和互補式壓控震盪器(Complementary VCO)組成振盪器,同時還使用兩個電感與主電感用來構建變壓器(Transformer)。這樣結構不僅大幅地減小了晶片的佔用面積,同時也在相位雜訊和功耗表現上有優異的性能。晶片面積為0.766×1.026 mm2。
其次,第五章節著重於使用特殊形狀的八字形電感互補式壓控震盪器,此架構使用TSMC 0.18 μm CMOS製程工藝進行設計和模擬,本章節將探討自偏壓互補式壓控震盪器的設計理念、原理,模擬測試以及實際的量測結果定。同時提出應用八字形電感的自偏壓互補式壓控震盪器,探討八字形電感對於VCO特性的影響,並且在此討論此VCO的設計理念、原理,模擬測試以及實際的量測結果定。本章節加入干擾源模擬使用八字型電感與傳統八角型電感進行模擬比較,另外本章節結合本實驗室陳暉同學電感等效模型進行驗證。整個晶片面積佔據0.716×0.641 mm2。
接續前幾章節,第六章節著重於TSMC 0.18 μm CMOS工藝下的雙頻段除二注入鎖定除頻器 (ILFD),基於兩組LC的電容交叉耦合振盪器進行改良,分別組成低頻段(Low Band)與高頻段(High Band)的鎖定範圍。Low Band除二 ILFD 在 10.7mW 的功耗和 0 dBm 的注入信號功率下具有 4.19 GHz 至 11.8 GHz 的鎖定範圍,High Band除二 ILFD 在 8.2 mW 的功耗和 0 dBm 的注入信號功率下具有 11.3 GHz 至 12.42 GHz 的鎖定範圍,整個晶片面為0.919 ×0.745 mm2的小面積。
第七章為論文的結論,我們將回顧前幾章進行總結性的討論。藉由對論文前幾章提出的電路理論、模擬和設計的回顧,並深入探討高性能壓控振盪器和注入鎖定除頻器的應用前景,我們將討論如何將這些元件整合到射頻系統中,展示它們提高系統性能、降低功耗的潛力,以及它們對射頻領域的未來影響。


Nowadays, with the rapid development of technology in wireless communication, a variety of chips and subcircuits continue to be produced, providing numerous opportunities for innovation and application. However, this diversity also comes with a significant challenge – how to effectively integrate these subcircuits. The integration of various system sub-circuits often encounters different operating clocks, resulting in data deviations. It is in this context that phase-locked loops (PLLs) become a crucial part of the solution.
A typical PLL is mostly comprised of the following circuit components: a phase detector (PD) or a phase-frequency detector (PFD), a charge pump (CP), a loop filter (LF), a voltage-controlled oscillator (VCO), and a frequency divider (FD). The phase detector or phase-frequency detector serves as the first component, comparing the phase difference between the reference clock signal and the feedback clock signal to generate an output. The charge pump and loop filter produce current pulses based on the phase difference signal generated by the previous stage phase-frequency detector, resulting in a smooth control voltage through the loop filter. This control voltage regulates the output signal generated by the voltage-controlled oscillator, which is then fed back to the phase-frequency detector through the frequency divider.
This thesis focuses on two important components: one is a Voltage-Controlled Oscillator (VCO) and the other one is an Injection-Locked Frequency Divider (ILFD). The performance and design of these two components are of paramount importance to the overall functionality of the PLL. We will delve into their design principles and share best practices to ensure their effective contribution to the PLL's operation, achieving highly accurate clock synchronization and enhancing the system's performance.
The first part introduces an LC-tank Voltage-Controlled Oscillator (VCO) with a trifilar transformer fabricated using the TSMC 0.18 μm CMOS process. This section includes the circuit design, operational principles, and measurement results of the LCVCO. We first simulate the inductor characteristics using Advanced Design System (ADS) and then simulate the VCO characteristics using Cadence. This architecture comprises an inductor, a complementary voltage-controlled oscillator, and two additional inductors forming a transformer. This transformer configuration significantly reduces the area of the chip while improving phase noise performance and reducing power consumption. The entire chip occupies a compact area of 0.766×1.026 mm².
Furthermore, chapter 5 presents a self-biased complementary Voltage-Controlled Oscillator (VCO) with an 8-shaped inductor fabricated using the TSMC 0.18 μm CMOS process. This part includes the circuit design, operational principles, and a comparison of simulated results with measured results. The 8-shaped inductor is compared to the octangle inductor, and the former has better interference suppression capabilities than the latter. The whole chip occupies an area of 0.716×0.641 mm².
Chapter 6 presents a Dual resonator Injection-Locked Frequency Divider (ILFD) fabricated using TSMC 0.18 μm CMOS process. This structure contains two divided-by-two ILFDs, and the two ILFDs constitute the locking ranges for the Low Band resonator and High Band resonator. The Low Band ILFD achieves a locking range from 4.19 GHz to 11.8 GHz with 10.7 mW. The High Band ILFD achieves a locking range from 11.3 GHz to 12.42 GHz with 8.2 mW power consumption And the whole chip occupies an area of 0.919 ×0.745 mm².
Chapter 7 presents as the conclusion of the entire thesis, where we will review and conduct a comprehensive discussion of the preceding chapters. By revisiting the circuit theories, simulations, and designs proposed in the earlier chapters, and delving into the potential applications of high-performance VCO and ILFD, we will explore how to seamlessly integrate these components into RF systems. This will showcase their potential to enhance system performance, reduce power consumption, and enable new functionalities, as well as their impact on the future of the RF field.

摘要 I Abstract IV 致謝 VII Table of Contents VIII List of Figures XI List of Tables XVIII Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Introduction of RF Transceiver and Phase-Locked Loop 1 1.3 Research Purpose 3 1.4 Thesis Organization 4 Chapter 2 Overview of Voltage-Controlled Oscillators 6 2.1 Introduction 6 2.2 The Theory of Oscillators 8 2.2.1 Two port Oscillators (Feedback Oscillator) 9 2.2.2 One Port Oscillator (Negative Resistance Oscillator) 11 2.3 Category of Oscillators 14 2.3.1 Ring Oscillator 15 2.3.2 LC-Tank Oscillator 17 2.4 Design Notions of Voltage-Controlled Oscillator 25 2.4.1 Parameters of Voltage-Controlled Oscillator 26 2.4.2 Phase Noise 28 2.4.3 Quality Factor 33 2.4.4 Figure of Merit 35 Chapter 3 Overview of Injection-Locked Frequency Divider 37 3.1 Introduction 37 3.2 Principle of Injection-Locked Frequency Divider 38 3.3 Design Notions of Injection-Locked Frequency Divider 40 Chapter 4 Voltage-Controlled Oscillator with a Trifilar Transformer 44 4.1 Introduction 44 4.2 Simulation Results and Circuit Design 45 4.3 Measurement results 53 4.4 Chapter Conclusion 57 Chapter 5 Voltage-Controlled Oscillator with a 2-turn 8-shaped Inductor 58 5.1 Introduction 58 5.2 Introduce of Self-Biased Topology in VCO 59 5.3 Simulation Results and Circuit Design of Self-biased VCO 60 5.4 Measurement Results of Self-biased VCO 64 5.5 Simulation Results and Circuit Design of the VCO with 8-shaped Inductor 67 5.6 Measurement Results 73 5.7 Equivalent Model of Inductor 77 5.7.1 Proof of the Equivalent Model 80 5.8 Chapter Conclusion 82 Chapter 6 Divide-by-Two Injection-Locked Frequency Divider with a Hybrid Twisted Planar Transformer 83 6.1 Introduction 83 6.2 Simulation Results and Circuit Design 84 6.3 Measurement Results 93 6.4 Chapter Conclusion 100 Chapter 7 Conclusions 101 References 103

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[5] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[6] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press, 1998.
[7] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[8] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
[9] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[10] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[11] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[12] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[13] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[14] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[15] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[16] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[17] M. Tiebout, “A 480 μW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[18] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[19] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[20] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[21] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[22] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[23] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[24] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[25] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[26] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921–1930, Dec. 2001.
[27] D. Fathi and A. Nejad, "Ultra-low power, low phase noise 10 GHz LC VCO in the subthreshold regime," Circuits and Systems, Vol. 4 No. 4, 2013, pp. 350-355.
[28] Y. Peng et al., "A harmonic-tuned VCO with an intrinsic-high-Q F23 inductor in 65-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 981-984, Oct. 2020.
[29] K.-W. Tan, T.-S. Chu, and S. S. H. Hsu, “A 76.2–89.1 GHz phase-locked loop with 15.6% tuning range in 90 nm CMOS for W-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 8, pp. 538–540, Jun. 2015
[30] N. N. Tchamov and N. T. Tchamov, “Technique for flicker noise up-conversion suppression in differential LC oscillators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 959–963, Nov. 2007.
[31] C.-L. Yang and Y.-C. Chiang, “Low phase-noise and low-power CMOS VCO constructed in current-reused configuration,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 136–138, Feb. 2008.
[32] C. Meng, J.-S. Syu, S.-C. Tseng, Y.-W. Chang and G.-W. Huang, "Lowp hase-noise SiGe HBT VCOs using trifilar-transformer feedback," 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 249-252, doi: 10.1109/MWSYM.2008.4633150.
[33] C.-C. Li, M.-S. Yuan, Y.-T. Lin, C.-C. Liao, C.-H. Chang, and R. B. Staszewski, “A 0.2-V three-winding transformer-based DCO in 16-nm FinFET CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 2878–2882, Dec. 2020.
[34] W. B. Kuhn and N. M. Ibrahim, “Analysis of current crowding effects in multiturn spiral inductors,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 1, pp. 31–38, Jan. 2001.
[35] M.-D. Wei, S.-F. Chang, and S.-W. Huang, “An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 395–397, Jun. 2009.
[36] N. Jahan, A. Barakat, and R. K. Pokharel, “Design of low phase noise VCO considering C/L ratio of LC resonator in 0.18-µm CMOS technology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 12, pp. 3513–3517, Dec. 2021.
[37] I. Mansour et al., "Ku-band low phase noise VCO using high-quality factor transformer in 0.18-μm CMOS technology," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 10, pp. 1207-1210, Oct. 2022, doi: 10.1109/LMWC.2022.3167705.
[38] S. Oh, K.-S. Seo and J. Oh, "Low phase noise concurrent dual-band (5/7 GHz) CMOS VCO using gate feedback on nonuniformly wound transformer," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 177-180, Feb. 2021.
[39] R.-L. Wang, M.-C. Lin, Y.-J. Tzeng, C.-F. Yang and Y.-S. Lin, "A switched-capacitor current-reused VCO with symmetrical differential outputs," 2008 Asia-Pacific Microwave Conference, Hong Kong, China, 2008, pp. 1-4, doi: 10.1109/APMC.2008.4957869.
[40] B.H. Min, S. B. Hyun, H. K. Yu, “Low Voltage CMOS LC VCO with Switched Self-Biasing” ETRI Journal, vol. 31, no. 6, Dec. 2009.
[41] S. Levantino, M. Zanuso, C. Samori, and A. Lacaita, "Suppression of Flicker Noise Upconversion in a 65nm CMOS VCO in the 3.0-to-3.6GHz Band," IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, pp. 50-51, 2010.
[42] D. Li, Y.-T. Yang, Z.-M. Zhu, and Z.-C. Shi, ‘‘A 5-GHz LC VCO with digital AAC and AFBS for 2.4 GHz ZigBee transceiver applications,’’ Microelectron. J., vol. 46, no. 6, pp. 415–421, 2015.
[43] C. Sánchez-Azqueta, J. Aguirre, C. Gimeno, C. Aldea, and S. Celma, ‘‘High-resolution wide-band LC-VCO for reliable operation in phase-locked loops,’’ Microelectron. Rel., vol. 63, pp. 251–255, Aug. 2016
[44] J.-F. Huang, T.-H. Wei, and K.-L. Chen, A fully integrated 5.38-5.55 GHz low power CMOS Hartley voltage-controlled oscillator, Microwave Opt. Technol Lett 55 (2013), 978-981.
[45] C.-T Fu and H.-C. Luong, A 1V CMOS quadrature LC VCO using diode coupling, Radio and Wireless Symposium (2008), 167-170.
[46] Ji, X., et al.: Self-biased CMOS LC VCO based on trans-conductance linearisation technique. Electron. Letture. 53(22), 1460–1462 (2017)
[47] B. Razavi, "A study of injection locking and pulling in oscillators,"IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004
[48] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption widelocking-range dual-injection-locked 1/2 divider through simultaneousoptimization of VCO loaded Q and current,” IEEE Trans. Microw.Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[49] S.-L. Jang, C. Y. Lin, and C.-F. Lee, “A 0.35-um switched inductor dual-band LC-tank frequency divider,” in Proc. IEEE Int. Sym. VLSI Design, Autom. Test, Apr. 2008, pp. 240–242.
[50] O. Tesson, “High quality monolithic 8-shaped inductors for silicon RFIC design,” in IEEE SiRF, pp. 94-97, Jan. 2008
[51] S. L. Jang, et al., "Wide locking range divide by 3 Injection lockedfrequency divider using 6th order RLC Resonator," Trans. on VLSI Syst., 2598-2602, 24, 7, 2016.
[52] S.-L. Jang, C.-M. Chang, and M.-H. Juang, “Divide-by-2 injection locked frequency divider implemented with two shunt 4th-order LC resonators,” Analog Integr. Circuits Signal Process., vol. 91, no. 3, pp. 377–383, 2017.
[53] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEEMicrow. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[54] S.-L. Jang, F.-B. Lin, and J.-F. Huang, “Wide-band divide-by-2 injectionlocked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circuits Theor. Appl., vol. 43, no. 12, pp. 2081–2088, 2015.

QR CODE