簡易檢索 / 詳目顯示

研究生: 洪楚媚
Chu-mei Hung
論文名稱: 超高速巨量超高解析醫學影像雲端互動顯示技術
Ultra Fast Super High Resolution Medical Image Interactive Visualization Technique Over Internet
指導教授: 王靖維
Ching-Wei Wang
口試委員: 謝仁偉
Jen-Wei Hsieh
李恒昇
Herng-Sheng Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 76
中文關鍵詞: 數位病理巨量高解析影像即時互動式顯示雲端系統
外文關鍵詞: digital pathology, high resolution image, internet-based image cloud system, interactive system in real time
相關次數: 點閱:264下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 病理組織學是一門使用顯微技術或電子顯微鏡去觀察細胞組織形態的研究。在過去幾十年來,醫院病理部通常是使用傳統的光學病理顯微鏡,去觀察分析生物組織切片,這些切片都是以玻璃的形式存放,所以在運送過程容易毀損,也因為時間的關係造成變質,而且一次一人分析的情況下也會有人工誤判的問題。近年來隨著數位病理影像的推動,高解析影像對於準確的診斷越來越被重視,並預期未來在組織病理學中扮演一個革命性的角色。以往生醫影像資料庫只能儲存低解析影像或是字串資料,如:DNA序列;而大多數現有的大型影像技術有頻寬和儲存空間上的限制,所以在傳輸及存取之前,必須將巨量影像進行有損壓縮來解決這些問題。綜合上述,我們發現在雲端上即時互動式顯示巨量高解析顯微影像是目前市場高度需求的技術,也是未來的研究趨勢。本文提出了一超高速巨量超高解析醫學影像雲端互動顯示技術,此技術可以讓研究人員即時放大高解析影像,並清楚看到細胞質、細胞核和細胞組織型態,另外由於此技術不受頻寬限制,使用者可在雲端上進行有效率的判斷、分析。為了驗證此技術之可行性,我們成功地將之運用在高解析生物組織切片影像、幹細胞及超音波影像等醫學影像,並可快速的平移、放大、縮小巨量高解析影像。而在效能評估的兩項實驗中,其結果證明了方法一在雲端上觀看高解析影像的平均時間只要0.5~0.67秒,比方法二快了三到四倍,而且方法一進行編碼後所需的儲存空間幾乎是方法二的一半,然而,由於方法一的編碼架構較為複雜,所以編碼時間比方法二慢1.4倍,但是方法二進行編碼後小於原始影像的檔案其實是不需要的。綜合上述,使用方法一觀看高解析影像及儲存空間上有較佳的表現。


    Histopathology is the study of the microscopic anatomy of cells and tissues using microscopy techniques or electron microscope. During the past many decades, the pathologist sliced the cells or tissue into very thin layers that are mounted on a glass slide and examined under a microscope. With the recent advent of digital imaging, high-resolution digital images are necessary for accurate diagnosis, and it is expected to play a revolutionary role in future histopathology. In the past, biomedical image database can be only stored string data such as DNA sequences and low-resolution images. Most existing large-scale image techniques have bandwidth and storage limitations, so images must be lossy compressed to solve this problems before transmission and storage [1]. It is difficult to display high resolution microscopic images over internet in real time. This thesis presents two ultra fast super high resolution image cloud systems, which enables users to interactively view large, high resolution images within existing web browsers in real time. In evaluation, the method1 is demonstrated to render large high resolution image over internet in real time (0.5~0.67 second on average), and the results show that the method1 performs 3~4 times faster than method2 in rendering large high resolution images while costs approximately half of storage space method1 requires. However, the encoding time of method2 are 1.4 times faster than method1 due to following reasons, the regular encoding of the method2, and the complicated structure of the method1, but it is unnecessary to encode image dimension to 1*1 of the method2.

    中文摘要 i Abstract ii Patent iii 致謝 iv Table of Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Aim and Objectives 3 1.3 Thesis Organization 3 Chapter 2 Related Work 5 Chapter 3 Interactive Techniques of High Resolution Image 13 3.1 Encoding Method1 14 3.2 Encoding Method2 18 3.3 The Difference of the Larger Size Image Using Method1 and Method2 to Encode 27 3.4 Implementation 27 3.4.1 ActionScript 28 3.4.2 JavaScript 31 Chapter4 Experimental Results 34 4.1 System Prototype 35 4.2 Image Viewer for Different Medical Images 36 4.3 First Experiment 37 4.3.1 Experimental Setup 38 4.3.2 Performance Results 38 4.4 Second Experiment 43 4.4.1 Experimental Setup 43 4.4.2 Performance Results 44 Chapter5 Discussion and Conclusion 47 References 49 Appendix 52

    [1]Pokle, Pravin B., and N.G. Bawane. (2012) "Lossy Image Compression using Discrete Cosine Transform." Journal of visual communication and image Representation, Vol. 8, No. 1, pp. 21–26
    [2]Gurcan, M.N.,Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B. (2009) Histopathological Image Analysis: A Review. Biomedical Engineering, IEEE, 2:147-171.
    [3]Sinard, J.H. and Mattie, M.E. (2005) Overcoming the Limitations of Integrated Clinical Digital Imaging Solutions. Arch Pathol Lab Med, 129(9):1118-26.
    [4]Dennis, T., Start, R.D., Cross, S.S. (2005) The use of digital imaging, video conferencing, and telepathology in histopathology: a national survey. J Clin Pathol.,58(3):254–258
    [5]Drazen M., Laura M., Anil V. (2011) Clinical Examination and Validation of Primary Diagnosis in Anatomic Pathology Using Whole Slide Digital Images. Archives of Pathology & Laboratory Medicine, Vol. 135, No. 3, pp. 372-378.
    [6]Krenacs, T., Zsakovics I., Micsik T., Fonyad L., Varga VS., Ficsor L., Kiszler G., Molnar B. (2010) Digital microscopy – the upcoming revolution in histopathology teaching, diagnostics, research and quality assurance. Microscopy: Science, Technology, Applications and Education, 965–977
    [7]Basu, A., Pi M., Cheng I., Bates M. (2002) Distributed retrieval of wavelet images using bandwidth monitoring, Proc. IAPR/IEEE Int. Conf. Pattern Recognition, 604 -607
    [8]Goode A, Satyanarayanan M. (2008) A vendor-neutral library and viewer for whole-slide images., Computer Science Department, Carnegie Mellon University, Pittsburgh, PA. Tech Rep CMU-CS-08-136
    [9]Jeong, W., Schneider, J., Turney, S.G., Faulkner-Jones, B.E., Meyer, D., Westermann, R., Reid, R.C., Lichtman, J., Pfister, H. (2010) Interactive histology of large-scale biomedical image stacks. Visualization and Computer Graphics, IEEE Transactions on, 16(6):1386-1395.
    [10]Aperio images. http://demoimageserver.secondslide.com/H_E_40x.svs/view.apml Accessed date: 2013/06/08
    [11]Bernabe, G., Gonzalez, J., Duato. J., (2000) A New Lossy 3-D Wavelet Transform for High-Quality Compression of Medical Video. In Proceedings of IEEE EMBS International Conference on Information Technology Applications in Biomedicine, 226 - 231.
    [12]Ho, J., Parwani, A.V., Jukic D.M., Yagi Y., Gilbertson J.R. (2006) Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Human pathology, 37:322–331.
    [13]Gilbertson, J. and Yagi, Y. (2008) Histology, imaging and new diagnostic work-flows in pathology. Diagnostic Pathology, 3(Suppl):S14.
    [14]Lossy compression. https://en.wikipedia.org/wiki/Lossy_compression Accessed date: 2013/06/05
    [15]GigaPan. http://www.gigapan.org/. Accessed date: 2013/06/05
    [16]Kopf J., Uyttendaele M., Deussen O., Cohen M. F. (2007) Capturing and viewing gigapixel images. ACM Transactions on Graphics, 26(3):93:1–93:10.
    [17] Kopf J., Neubert B., Chen B., Cohen M., Cohen-Or D., Deussen O., Uyttendaele M., Lischinski D., (2008) Deep Photo: Model-Based Photograph Enhancement and Viewing, ACM Trans. Graphics, vol. 27, no. 5, pp. 116:1-116:10.
    [18]Luan Q., Drucker S.-M. , Kopf J., Xu Y.-Q., Cohen M.-F., (2008) Annotating Gigapixel Images. UIST, pages 33–36.
    [19]Microsoft HD view. http://research.microsoft.com/en-us/um/redmond/groups/ ivm/HDView/. Accessed date: 2013/06/08
    [20] Aperio Demo. http://images2.aperio.com/BigTIFF/BreastCancer225.tif/ Accessed date: 2013/06/03
    [21] The American Society of Dermatopathology : WebScope Quick Reference Guide. http://www.asdp.org/exam/upload_files/moc/WebScopeQuickReferenceGuide.pdf Accessed date: 2013/06/07
    [22]Valiente, J.M., Albert, F., Carretero, M., Gomis, J.M. (2004) Structural Description of Textile and Tile Pattern Designs Using Image Processing. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004). IEEE Computer Society Press, Cambridge
    [23]Nirnimesh, Harish, P., and Narayanan, P. J. (2007) Garuda: A Scalable Tiled Display Wall Using Commodity PCs," Visualization and Computer Graphics, IEEE Transactions on, vol.13, no.5, pp.864--877.
    [24]Nam S., Deshpande S., Vishwanath V., Jeong B., Renambot L., Leigh J. (2010) Multiapplication Intertile Synchronization on Ultra-High-Resolution display walls. In Proc. MMSys ’10, pages 145–156. ACM.
    [25] IIPImage. http://iipimage.sourceforge.net/ Accessed date: 2013/06/07
    [26]Marfil R., Molina-Tanco L., Bandera A., Rodriguez J., Sandoval F. (2006) Pyramid segmentation algorithms revisited. Pattern Recognit , 39(8): 1430--1451.
    [27]Hemayed, E.E., Farghal, E.M., Shaheen, S.I. (2010) Pyramid-based multiresolution tiling for interactive viewing of remote sensing images, Computer Engineering Conference (ICENCO), pp.128.
    [28]Marfil R., Rodriguez J., Bandera A., Sandoval F. (2004) Bounded irregular pyramid: a new structure for colour image segmentation. Pattern Recognit, 37(3):623-626.
    [29]Marfil R., Molina-Tanco L., Bandera A., and Sandoval F.. (2007) The construction of bounded irregular pyramids with a union-find decimation process. Graph Based Representations in Pattern Recognition, LNCS 4538:307-318.
    [30]Liu Y., Chen L., Xiong W., Liu L., Yang D. (2010) A mapreduce approach for processing large-scale remote sensing images, Geoinformatics (GEOINFORMATICS), 2012 20th International Conference on), pp.1-7.
    [31]Xuexian, P., Xudong, Y., Sikun, L., Junqiang, S. (2005) High-Performance Navigation and Rendering of Very-Large Scale Landscape and Seascape. Ninth International Conference on Computer Aided Design and Computer Graphics, CAD/CG
    [32]Smith, A. (2007) Introducing Zoomify Image. Information Technology and Libraries, 26(1), 48-51.

    無法下載圖示 全文公開日期 2018/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE