簡易檢索 / 詳目顯示

研究生: 張鈞浩
Chun-Hao Chang
論文名稱: 含低溫煆燒稻殼灰無機聚合物漿體之力學與乾縮性質
Mechanical Properties and Shrinkage of Geopolymer with Rice Husk Ash Calcined at Low Temperature
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 陳君弢
張大鵬
李釗
王韡蒨
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 146
中文關鍵詞: 低溫煆燒稻殼灰無機聚合物力學性質乾縮性質
外文關鍵詞: low-temperature calcination, rice husk ash, geopolymer, mechanical properties, shrinkage
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無機聚合物是一種將鹼性溶液與含高矽、鋁或鈣材料混合後,經過溶解與聚合反應所形成的一種無水泥的膠結材料。然而,無機聚合物往往早期放熱高、乾縮劇烈、晚期強度下降。有鑑於此,本研究嘗試使用400°C煆燒之稻殼灰以體積部分取代爐石粉,混合後再與氫氧化鈉溶液和矽酸鈉溶液製成無機聚合物,期望改善無機聚合物之力學性質與乾縮性質,同時也期望解決部分稻殼棄置的問題,進一步提升稻殼灰的應用價值。本研究也探討了來自不同產地稻殼所產製稻殼灰之物化性質差異。試驗結果發現,使用不同氫氧化鈉與矽酸鈉比例的鹼激發劑影響抗壓強度,以稻殼灰部分取代爐石粉可能造成強度降低及乾縮量增加。此結果係因稻殼灰的含矽量較爐石粉高,故可能造成取代後的總矽量過多進而降低漿體的強度與增加乾縮量。若隨著稻殼灰取代量而適當調整鹼液中的氫氧化鈉與水玻璃比例,則添加稻殼灰確實能有效提高強度與降低乾縮量,甚至於添加量10%時,其28天齡期抗壓強度比控制組高。此外,結果亦顯示,不同產地之稻殼灰對於力學試驗結果影響甚微。微觀分析顯示,稻殼灰取代量與鹼激發劑混合比例皆會影響水化生成產物,但主要產物仍皆為C-S-H膠體。


Geopolymer is a material, produced by the geopolymeriziation of the mixture of the raw materials with high silica, alumina, and calcium contents and the alkali solution in the absence of the Porland cement. However, it has deficiencies, including the high heat release at eary age, the high shrinkage, and strength reduction. In view of these issues, in this study, the geopolymer was produced by replacing some portion of the slag by the rice husk ash (RHA) calcined at 400 °C by volume and then mixing that with the solution of the sodium hydroxide and the sodium silicate (water glass). It is hoped to improve the mechanical properties and shrinkage of the geopolymer, resolve the problems of processing, and increase the practical application value of waste rice husks. This study also explored the phycial and chemical properties of the RHA changed by the compositions. Results showed that the ratio of the sodium hydroxide to the water glass influenced the compressive strengths. By replacing portion of the slag with the RHA, the compressive strength was reduced and the shrinkage was increased. Such results were attributed to the high silica content of the RHA, leading to excess silica in the resulting geopolymer. With appropriate adjustments of the ratio of the sodium hydroxire to the water glass, the RHA effectively increased the strength and reduced the shrinkage. At 28 days, the 10% RHA even induced compressive strength higher than the plain. In addition, the RHA produced by the rice husk from different sources had minor differences in the mechanical properties of the geopolymer. Finally, the microstrucal analyses showed that both the amount of RHA and the ratio of the sodium hydroxide to the water glass influence the formation of the hydration products. Most of them were identified as C-S-H.

摘要 Abstract 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1 稻殼灰 2.1.1 稻殼灰之基本特性 2.1.2 稻殼灰之物理性質 2.1.3 稻殼灰之化學性質 2.1.4 稻殼灰之微觀結構 2.1.5 稻殼灰對混凝土之影響 2.2 爐石粉 2.2.1 爐石之物理性質 2.2.2 爐石之化學性質 2.3 無機聚合物 2.3.1 無機聚合物的發展 2.3.2 無機聚合物反應機理 2.3.3 無機聚合物微觀結構型態 2.3.4 影響物化性質之因素 2.3.6 含稻殼灰之無機聚合物 2.3.5 無機聚合物之特性與實務應用 第三章 試驗規劃 3.1 試驗內容及變數 3.1.1 變數說明 3.1.2 編碼說明 3.2 試驗材料與設備 3.2.1 試驗材料 3.2.2 試驗設備 3.3 配比設計 3.3.1 配比設計一 3.3.2 配比設計二 3.4 試驗設計與項目 3.4.1物理性質試驗 3.4.2 力學性質試驗 3.4.3 乾縮性質試驗 3.4.4 水化熱試驗 3.4.5 微觀結果分析試驗 第四章 試驗結果與討論 4.1 先期試驗 4.1.1 稻殼灰煆燒時間測定 4.1.2 鹼激發劑混合比例 4.2 力學試驗 4.2.1 配比設計一 4.2.2 配比設計二 4.2.3 不同產地稻殼灰之力學性質差異性 4.3 乾縮試驗 4.4 水化熱試驗 4.5 X光繞射試驗分析 4.6 掃描式電子顯微鏡分析 4.7 綜合比較 4.8 成本分析 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

[1] ASTMC39/C39M-14 (2014). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken,PA, ASTM International.

[2] ASTMC305-06 (2009). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. West Conshohocken,PA, ASTM International.

[3] Bakharev, T., Sanjayan, J. G.,Cheng, Y. B. (1999). "Alkali activation of Australian slag cements." Cement and Concrete Research 29(1): 113-120.

[4] Bakharev, T., Sanjayan, J. G.,Cheng, Y. B. (1999). "Effect of elevated temperature curing on properties of alkali-activated slag concrete." Cement and Concrete Research 29(10): 1619-1625.

[5] Cheng, T. W.,Chiu, J. P. (2003). "Fire-resistant geopolymer produced by granulated blast furnace slag." Minerals Engineering 16(3): 205-210.

[6] Chi, M. (2015). "Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars." Construction and Building Materials 99: 128-136.

[7] CNS3036 (2009). 混凝土用飛灰及天然或煆燒卜作嵐攙和物,經濟部標準檢驗局, 中華民國國家標準。

[8] CNS10896 (2009). 卜特蘭水泥混凝土用飛灰或天然卜作嵐礦物攙料之取樣及檢驗法,經濟部標準檢驗局,中華民國國家標準。

[9] CNS12549 (2014). 混凝土及水泥砂漿用水淬高爐爐碴粉,經濟部標準檢驗局,中華民國國家標準。

[10] CNS14603 (2011). 硬固水泥砂漿及混凝土長度試驗法,經濟部標準檢驗局,中華民國國家標準。

[11] Davidovits, J. (2008). Geopolymer Chemistry & Application. France, Institut Géopolymère.

[12] Davidovits, J., James, C.,Davidovits, R. (1999). Chemistry of geopolymer systems terminology. Proceedings Of Geopolymer 99 Second International Conference, Institut Geopolymere, Saint-Quentin, France.

[13] Deb, P. S., Nath, P.,Sarker, P. K. (2015). "Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature." Procedia Engineering 125: 594-600.

[14] Duxson, P., Provis, J. L., Lukey, G. C.,van Deventer, J. S. J. (2007). "The role of inorganic polymer technology in the development of ‘green concrete’." Cement and Concrete Research 37(12): 1590-1597.

[15] Gebregziabiher, B. S., Thomas, R. J.,Peethamparan, S. (2016). "Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders." Construction and Building Materials 113: 783-793.

[16] Glukhovsky, V. D. (1959). "Soil silicates." USSR:Gostroiizdat.

[17] Haha, M. B., Lothenbach, B., Le Saout, G.,Winnefeld, F. (2011). "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO." Cement and Concrete Research 41(9): 955-963.

[18] He, Z.-h., Li, L.-y.,Du, S.-g. (2017). "Creep analysis of concrete containing rice husk ash." Cement and Concrete Composites 80: 190-199.

[19] Hwang, C. L.,Huynh, T. P. (2015). "Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers." Construction and Building Materials 101: 1-9.

[20] Hwang, C. L.,Wu, D. S. (1989). "Properties of Cement Paste Containing Rice Husk Ash." Special Publication 114: 733-762.

[21] JIS-A6206 (2013). Ground granulated blast-furnace slag for concrete,日本工業標準。

[22] Jose, J.,Subba, R. M. (1986). "Reactivity of rice husk ash." Cement and Concrete Research 16(3): 296-302.

[23] Jose, J.,Subba, R. M. (1986). "Silica from rice husk through thermal decomposition." Thermochimica Acta 97: 329-336.

[24] Komnitsas, K., Zaharaki, D.,Perdikatsis, V. (2009). "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers." Journal of Hazardous Materials 161(2): 760-768.

[25] Kusbiantoro, A., Nuruddin, M. F., Shafiq, N.,Qazi, S. A. (2012). "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete." Construction and Building Materials 36: 695-703.

[26] Lanning, F. C. (1963). "Plant Constituents, Silicon in Rice." Journal of Agricultural and Food Chemistry 11(5): 435-437.

[27] Li, C., Sun, H.,Li, L. (2010). "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40(9): 1341-1349.

[28] Maragkos, I., Giannopoulou, I. P.,Panias, D. (2009). "Synthesis of ferronickel slag-based geopolymers." Minerals Engineering 22(2): 196-203.

[29] Mehta, P. K. (1978). "Siliceous ashes and hydraulic cements prepared therefrom." United States Patent: 4105459.

[30] N. Maeda, I. W. M. K. T. U.,Pushpalal, G. K. D. (2001). "Development of a New Furnace for the Production of Rice Husk Ash." Special Publication 199.

[31] Nair, D. G., Fraaij, A., Klaassen, A. A. K.,Kentgens, A. P. M. (2008). "A structural investigation relating to the pozzolanic activity of rice husk ashes." Cement and Concrete Research 38(6): 861-869.

[32] Onojah, A. D., Agbendeh, N. A.,Mbakaan, C. (2013). "Rice husk ash refractory: the temperatura dependent crystalline phase aspects " International Journal of Research and Reviews in Applied Sciences 15(2): 12.

[33] Palomo, M. W. G. A.,Blanco, M. T. (1999). "Alkali-activated fly ashes: A cement for the future." Cement And Concrete Research 29(8): 1323-1329.

[34] Patel, M., Karera, A.,Prasanna, P. (1987). "Effect of thermal and chemical treatments on carbon and silica contents in rice husk." Journal of Materials Science 22(7): 2457-2464.

[35] Payá, J., Monzó, J., Borrachero, M. V., Peris-Mora, E.,Ordóñez, L. M. (2000). Studies on crystalline rice husk ashes and the activation of their pozzolanic properties. Waste Management Series. G. R. Woolley, J. J. J. M. Goumans and P. J. Wainwright, Elsevier. 1: 493-503.

[36] Peng, J. X., Huang, L., Zhao, Y. B., Chen, P., Zeng, L.,Zheng, W. (2012). "Modeling of Carbon Dioxide Measurement on Cement Plants." Advanced Materials Research 610-613: 2120-2128.

[37] Phair, J. W., Smith, J. D.,Van Deventer, J. S. J. (2003). "Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers”." Materials Letters 57(28): 4356-4367.

[38] Phair, J. W.,Van Deventer, J. S. J. (2002). "Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers." International Journal of Mineral Processing 66(1): 121-143.

[39] Purdon, A. O. (1940). "The action of alkali on the blast furnace slag." Journal Of The Society Of Chemical Industry 59(5): 191-202.

[40] Rêgo, J., A. Nepomuceno, A., P. Figueiredo, E., P. Hasparyk, N.,D. Borges, L. (2014). Effect of Particle Size of Residual Rice-Husk Ash in Consumption of Ca(OH)2.

[41] Sensale, G. R. d., Ribeiro, A. B.,Gonçalves, A. (2008). "Effects of RHA on autogenous shrinkage of Portland cement pastes." Cement and Concrete Composites 30(10): 892-897.

[42] Shi, C.,Day, R. L. (1995). "A calorimetric study of early hydration of alkali-slag cements." Cement and Concrete Research 25(6): 1333-1346.

[43] Shi, C.,Day, R. L. (1996). "Some factors affecting early hydration of alkali-slag cements." Cement and Concrete Research 26(3): 439-447.

[44] Sturm, P., Gluth, G. J. G., Brouwers, H. J. H.,Kühne, H. C. (2016). "Synthesizing one-part geopolymers from rice husk ash." Construction and Building Materials 124: 961-966.

[45] Swanepoel, J. C.,Strydom, C. A. (2002). "Utilisation of fly ash in a geopolymeric material." Applied Geochemistry 17(8): 1143-1148.

[46] Van Jaarsveld, J. G. S., Van Deventer, J. S. J.,Lorenzen, L. (1997). "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10(7): 659-669.

[47] Velupillai, L., Mahin, D. B., Warshaw, J. W.,Wailes, E. J. (1997). A study of the market for rice husk-to energy systems and equipment. USA, Louisiana State University Agricultural Center.

[48] Wang, S. D.,Scrivener, K. L. (1995). "Hydration products of alkali activated slag cement." Cement and Concrete Research 25(3): 561-571.

[49] Wang, W. H., Meng, Y. F.,Wang, D. Z. (2017). "Effect of rice husk ash on high-temperature mechanical properties and microstructure of concrete." Chemists and Chemical Engineers 66(3-4): 157-164.

[50] Xu, H.,Van Deventer, J. S. J. (2000). "The geopolymerisation of alumino-silicate minerals." International Journal Minerals Process 59(3): 247-266.

[51] Xu, H., Van Deventer, J. S. J.,Lukey, G. C. (2001). "Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures." Industrial Engineering Chemical Research 40(17): 3749-3756.

[52] Xu, Z.,Zhou Huanhai, W. X. (1993). "Kinetic study on hydration of alkali-activated slag." Cement And Concrete Research 23(6): 1253-1258.

[53] Ye, H.,Radlińska, A. (2016). "Shrinkage mechanisms of alkali-activated slag." Cement and Concrete Research 88: 126-135.

[54] Zain, M. F. M., Islam, M. N., Mahmud, F.,Jamil, M. (2011). "Production of rice husk ash for use in concrete as a supplementary cementitious material." Construction and Building Materials 25(2): 798-805.

[55] Zareei, S. A., Ameri, F., Dorostkar, F.,Ahmadi, M. (2017). "Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties." Case Studies in Construction Materials 7: 73-81.

[56]代新祥,文梓芸 (2001). 土壤聚合物水泥,新型建築材料,北京,6: 34-35。

[57]劉德昌 (1999). 流化床燃燒技術的工程應用,北京,中國電力出版社。

[58]高庭芳、蘇宗振 (2014). "革新稻米產業發展策略" 農政與農情,270。

[59]許樹恩,吳泰伯 (1996). X光繞射原理與材料結構分析,台北市,中國材料科學學會。

[60]陳姵華 (2017). 含低溫鍛燒稻殼灰漿體之力學與耐久性質,營建工程研究所,國立台灣科技大學,碩士論文。

[61]黃兆龍 (2007). 卜作嵐混凝土使用手冊,台北市,財團法人中興工程顧問社。

[62]黃兆龍 (2007). 混凝土性質與行為,台北市,詹氏書局。

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE