簡易檢索 / 詳目顯示

研究生: 黎曉
Xiao Li
論文名稱: 移動設備中互動介面之尋路輔助設計研究
A Study on the Wayfinding Aids Design of Interactive User Interface for a Mobile Device
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 陳建雄
Chien-Hsiung Chen
范振能
Jeng-Neng Fan
柯志祥
Chih-Hsiang Ko
許言
Yen Hsu
吳志富
Chih-Fu Wu
學位類別: 博士
Doctor
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 尋路輔助設計使用者介面設計移動設備互動設計
外文關鍵詞: Wayfinding aid design, User interface design, Mobile device, Interaction design
相關次數: 點閱:248下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如今隨著人們日益增長的尋路使用需求,移動尋路走進了人類的視野。使用者與螢幕互動,來觀察和調查移動設備上的地圖,逐而藉此獲得尋路資訊,完成搜尋、探索、規劃等尋路任務。由於移動設備之螢幕大小的限制,尋路相關地圖的內容通常會移出螢幕,導致使用者無法一次獲得所有的地圖尋路資訊。因此尋路輔助設計在互動介面中就變得極為重要。人機互動的學者們認為介面設計會影響其使用性,這進一步影響了使用者獲取尋路資訊的效能。如今,人們不僅想要高效的獲取尋路資訊,並且他們在尋路過程中還希望獲取樂趣、舒適感等積極影響。因此,本研究試圖探討使用者在使用移動設備尋路的過程中,如何透過輔助設計提高使用者的尋路績效、增強使用者介面的積極影響,並且試圖降低使用者在移動尋路中產生的工作負荷。以提供給介面設計工作者和移動尋路的設計人員適當的理論依據與應用指導為目的,並提供有價值的設計建議。

    本研究以三個實驗的方法進行探討。意旨在探討使用者使用移動設備尋路的過程中,互動介面和尋路輔助設計對使用者尋路績效與主觀感受的影響。探討移動尋路之互動介面、尋路地圖大小和尋路輔助設計之視覺指引、其響應時間、全覽圖設計、尋路地圖資訊,討論使用者的尋路時間績效、工作負荷、主觀偏好等方面的效應。本研究基於研究現實生活中實用性強、且廣泛應用的移動尋路之議題,透過有效的數據分析和探討,並以先前的研究作為基礎理論和支持,用來增強本研究的可靠度和深度,呈現出有實際效用的實驗結果。

    實驗一調查了地圖大小和互動介面對使用移動設備的使用者尋路績效和偏好的影響。檢查了兩種類型的互動式介面(即平移和視孔介面)和三種不同的地圖大小(小,中和大)。結果表明:(1)參與者的尋路績效受到地圖尺寸和互動介面的影響;(2)在歐幾里得距離判斷和路線辨別任務方面,視孔介面表現更為優越;(3)當參與者使用平移介面時,參與者處理地圖部分旋轉任務時,並非總是需要很長的時間才能完成具有較大地圖尺寸的任務;(4)視孔介面的使用性得分被認為高於平均水平,並且對參與者的偏好產生了積極的影響。

    實驗二這項研究的目的是透過移動設備上的動態視孔介面來研究視覺指引設計和響應時間對使用者尋路績效的影響。探討了1秒和3秒的響應時間,採用了三種不同的視覺指引設計,即點、短線和邊線。結果表明:(1)不同響應時間的視覺指引會影響參與者的尋路績效;(2)在規劃路線時,邊線視覺指引在1秒的響應時間下表現出更好的結果;(3)當參與者區分目標順序時,3秒的響應時間要比1秒更好。(4)參與者認為邊線視覺指引設計降低了生理需求的負荷。

    實驗三探討了使用全覽圖作為尋路輔助設計應用在移動尋路下的三種不同全覽圖的地標數量(0個、14個和28個)和兩種全覽圖形式,即為簡單全覽圖和透明全覽圖。結果表明:(1)參與者的尋路績效受到不同的全覽圖形式和全覽圖地標數量所影響;(2)當參與者尋路需要辨別其目標次序時,較多地標的透明全覽圖獲得更好的尋路績效;(3)尋找單個地標時,含有地標的全覽圖獲得更優良的績效;(4)在使用動態視孔介面尋路下,當簡單全覽圖作為尋路輔助設計時,參與者產生的估計誤差距離更小。


    With the increasing demand for daily wayfinding activity, mobile wayfinding, using mobile devices, has been attracting attention. However, due to the limited screen size of mobile devices, the relevant map content is often shifted off-screen, thus increasing the difficulty of wayfinding when viewing maps on mobile devices. Wayfinding aids play a crucial role in interactive interfaces for wayfinding purposes. Human-computer interaction scholars believe that a good user interface design will affect the usability of the user interface, which further affects how easily participants can obtain wayfinding information. Nowadays, people not only want to obtain wayfinding information efficiently, but they also want to experience fun, comfort, and other positive influences during the wayfinding process. Therefore, this study explored how participants can improve their wayfinding performance, and how to enhance the positive impact of the user interface, and reduce the user’s workload during their wayfinding process through using wayfinding aids. Participants in this study interacted with the interface for observation and investigation of maps on mobile devices. They obtained wayfinding information to complete wayfinding tasks such as search, exploration, and route planning. Valuable design suggestions are provided to interface designers and mobile wayfinding designers with an appropriate theoretical basis and application guidance.

    This study was conducted based on the research of practical and widely used mobile wayfinding concerns in daily life, using standard quantitative analysis and discussion, and referred to previous research as the basic theory and support to enhance the reliability and depth of this research to ensure practical experimental results. The study consisted of three experiments, with the purpose of examining the effect of the wayfinding aids design of the interactive interface on participants' wayfinding performance and subjective preferences when using a mobile device. The study examined the interactive interface, wayfinding tasks, the map size of mobile wayfinding and visual cues, response time, overview map design, wayfinding information of wayfinding aids design. Besides, the study analyzed participants' wayfinding performance, workload, and subjective preferences.

    Experiment 1 investigated the effects of the map size and interactive interface on users’ wayfinding performance and preference by using mobile devices. Two types of interactive interfaces (i.e., panning and peephole interfaces) and three different map sizes (small, medium, and large) are examined. The results showed that: (1) the participants’ wayfinding performance was affected by the map size and interactive interface; (2) the peephole is superior regarding the Euclidean distance judgment and the route recognition task; (3) it does not always take a significantly longer time to complete the task with the larger map size when dealing with the map section rotation task when participants use the panning interface; and (4) the usability scores of the peephole interface were considered above average, and there was a positive impact on the participants’ preferences.

    The purpose of experiment 2 was to investigate the effects of visual cue design and response time on users’ wayfinding performance with a dynamic peephole interface on a mobile device. Both 1 s and 3 s response times were examined. Three different visual cue designs, i.e., the dot, short-line, and border-line, were adopted. The results revealed that: (1) Visual cues with different response times can affect users’ wayfinding performance; (2) When planning a route, the border-line visual cues exhibited better outcomes with the 1-s response time; (3) When users distinguished the order of the targets, the 3-s response time had better user performance than 1 s; and (4) Participants perceived lower physical demand with the border-line visual cue design.

    Experiment 3 further explored the effects of the forms and the numbers of landmarks on the overview map in the wayfinding aids design. This experiment explored three different numbers of landmarks (0, 14, 28) of overview maps and two forms (simple and transparent) of overview maps. The results showed that: (1) the participants' wayfinding performance was affected by the form and number of the landmark; (2) When distinguishing the landmarks' order, participants gained better performance by using the transparent overview map with landmarks; (3) When searching for a target, participants spent shorter task time using the overview map with landmarks; and (4) By using a simple overview map as a wayfinding aid for the peephole interface, participants estimated less error direction.

    中文摘要 ii Abstract iv 誌 謝 vi 目錄 vii 圖目錄 x 表目錄 xii 一、緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究限制與範圍 3 1.4研究架構與流程 3 二、文獻探討 6 2.1移動尋路 6 2.1.1互動介面 6 2.1.2尋路任務 8 2.1.3尋路地圖大小 9 2.2尋路輔助設計 10 2.2.1視覺指引 10 2.2.2視覺指引之響應時間 11 2.2.3全覽圖設計 12 2.2.4尋路地圖資訊 15 2.3尋路個人因素 16 2.3.1尋路生理性别因素 16 2.3.2尋路心理因素 17 2.4小結 18 三、研究議題一:地圖尺寸應用於互動式介面之移動尋路研究 20 3.1研究目的 20 3.2實驗方法 21 3.2.1實驗對象 21 3.2.2實驗樣本與設備 21 3.2.3實驗流程 24 3.3結果分析 24 3.3.1任務執行時間分析 25 3.3.2系统使用性尺度量表分析 28 3.3.3主觀偏好分析 28 3.4結果討論 29 3.5小結 30 四、研究議題二:響應時間應用於尋路輔助設計之移動尋路研究 32 4.1研究目的 33 4.2實驗方法 33 4.2.1實驗對象 34 4.2.2實驗樣本與設備 34 4.2.3實驗流程 37 4.3結果分析 38 4.3.1任務執行時間分析 38 4.3.2NASA-TLX工作負荷分析 40 4.3.3主觀偏好分析 43 4.4結果討論 45 4.5小結 47 五、研究議題三:尋路輔助設計形式與地標數量之移動尋路研究 48 5.1研究目的 49 5.2實驗方法 49 5.2.1實驗對象 49 5.2.2實驗樣本與設備 49 5.2.3實驗流程 52 5.3結果分析 52 5.3.1任務執行時間分析 53 5.3.2估計誤差方向和距離分析 55 5.3.3NASA-TLX工作負荷分析 56 5.4結果討論 58 5.5小結 59 六、結論與建議 61 6.1研究成果與建議 61 6.2未來研究計劃 62 附錄 76

    Ahmadpoor, N., & Smith, A. D. (2020). Spatial knowledge acquisition and mobile maps: The role of environmental legibility. Cities, 101, 102700.
    Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. Wayfinding behavior: Cognitive mapping and other spatial processes, 4680.
    Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22(3), 327-355.
    Andersen, N. E., Dahmani, L., Konishi, K., & Bohbot, V. D. (2012). Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol Learn Mem, 97(1), 81-89.
    Apple Inc., A. (2020). About ios 13 updates - apple support. Retrieved from https://support.apple.com/en-us/HT210393
    Araki, T., & Komuro, T. (2018). On-mouse projector: Peephole interaction using a mouse with a mobile projector. Pervasive and Mobile Computing, 50, 124-136.
    Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: investigation of cue type. Behav Neurosci, 121(2), 291-300.
    Baudisch, P., Good, N., Bellotti, V., & Schraedley, P. (2002). Keeping things in context: a comparative evaluation of focus plus context screens, overviews, and zooming. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Minneapolis, Minnesota, USA.
    Baudisch, P., & Rosenholtz, R. (2003a). Halo: A technique for visualizing off-screen locations. Paper presented at the Conference on Human Factors in Computing Systems - Proceedings.
    Baudisch, P., & Rosenholtz, R. (2003b). Halo: a technique for visualizing off-screen objects. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA.
    Beard, D. V., & Ii, J. Q. W. (1990). Navigational techniques to improve the display of large two-dimensional spaces. Behaviour & Information Technology, 9(6), 451-466.
    Beardsley, P., van Baar, J., Raskar, R., & Forlines, C. (2005). Interaction using a handheld projector. IEEE Comput Graph Appl, 25(1), 39-43.
    Bosco, A., & Coluccia, E. (2003). Assessing Age Differences in Spatial Orientation Tasks following Map Study. Imagination, Cognition and Personality, 23(2), 233-240.
    Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: cognitive profiles and mental strategies. Applied Cognitive Psychology, 18(5), 519-532.
    Brooke, J. (1996). SUS: a “quick and dirty'usability. Usability evaluation in industry, 189.
    Brunyé, T. T., Mahoney, C. R., Gardony, A. L., & Taylor, H. A. (2010). North is up (hill): Route planning heuristics in real-world environments. Memory & cognition, 38(6), 700-712.
    Burigat, S., & Chittaro, L. (2011). Visualizing references to off-screen content on mobile devices: A comparison of Arrows, Wedge, and Overview+ Detail. Interacting with Computers, 23(2), 156-166.
    Burigat, S., & Chittaro, L. (2013). On the effectiveness of Overview+ Detail visualization on mobile devices. Personal and Ubiquitous Computing, 17(2), 371-385.
    Burigat, S., Chittaro, L., & Gabrielli, S. (2006). Visualizing Locations of Off-Screen Objects on Mobile Devices: A Comparative Evaluation of Three Approaches. Paper presented at the Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, Helsinki, Finland.
    Burigat, S., Chittaro, L., & Gabrielli, S. (2008a). Navigation techniques for small-screen devices: An evaluation on maps and web pages. International Journal of Human-Computer Studies, 66(2), 78-97.
    Burigat, S., Chittaro, L., & Parlato, E. (2008b). Map, diagram, and web page navigation on mobile devices: the effectiveness of zoomable user interfaces with overviews. Paper presented at the Proceedings of the 10th international conference on Human computer interaction with mobile devices and services, Amsterdam, The Netherlands.
    Burigat, S., Chittaro, L., & Vianello, A. (2012). Dynamic visualization of large numbers of off-screen objects on mobile devices: an experimental comparison of wedge and overview+detail. Paper presented at the Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, San Francisco, California, USA.
    Büring, T., Gerken, J., & Reiterer, H. (2006). Usability of overview-supported zooming on small screens with regard to individual differences in spatial ability. Paper presented at the Proceedings of the working conference on Advanced visual interfaces, Venezia, Italy.
    Büring, T., Gerken, J., & Reiterer, H. (2008). Zoom interaction design for pen-operated portable devices. International Journal of Human-Computer Studies, 66(8), 605-627.
    Caduff, D., & Timpf, S. (2006). A framework for assessing the salience of landmarks for wayfinding tasks. Cognitive processing, 7(1), 23-23.
    Cao, X., Li, J. J., & Balakrishnan, R. (2008). Peephole pointing: modeling acquisition of dynamically revealed targets. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy.
    Card, S. K., Robertson, G. G., & Mackinlay, J. D. (1991). The information visualizer, an information workspace. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New Orleans, Louisiana, USA.
    Casakin, H., Barkowsky, T., Klippel, A., & Freksa, C. (2000). Schematic maps as wayfinding aids Spatial cognition II (pp. 54-71): Springer.
    Chen, C.-H., Chang, W.-C., & Chang, W.-T. (2009). Gender differences in relation to wayfinding strategies, navigational support design, and wayfinding task difficulty. Journal of Environmental Psychology, 29(2), 220-226.
    Chen, N., Guimbretiere, F., & Sellen, A. (2012). Designing a Multi-Slate Reading Environment to Support Active Reading Activities. ACM Transactions on Computer-Human Interaction, 19(3).
    Chi, C. F., Lin, Y. H., & Lan, W. S. (2003). Measurement of information processing load and visual load on a dynamic information processing task. Behaviour & Information Technology, 22(5), 365-374.
    Chittaro, L. (2006). Visualizing Information on Mobile Devices. Computer, 39(3), 40–45.
    Choi, J., & Kim, G. J. (2013). Usability of one-handed interaction methods for handheld projection-based augmented reality. Personal and Ubiquitous Computing, 17(2), 399-409.
    Cockburn, A., Karlson, A., & Bederson, B. B. (2009). A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv., 41(1), Article 2.
    Cohen, R., & Schuepfer, T. (1980). The Representation of Landmarks and Routes. Child development, 51(4), 1065-1071.
    Coluccia, E., Bosco, A., & Brandimonte, M. A. (2007a). The role of visuo-spatial working memory in map learning: new findings from a map drawing paradigm. Psychol Res, 71(3), 359-372.
    Coluccia, E., Iosue, G., & Antonella Brandimonte, M. (2007b). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27(2), 135-144.
    Cooper, A., Reimann, R., & Dubberly, H. (2003). About face 2.0: The essentials of interaction design: John Wiley & Sons, Inc.
    Dabbs, J. M., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19(2), 89-98.
    Darken, R. P., & Peterson, B. (2002). Spatial orientation, wayfinding, and representation Handbook of virtual environments: Design, implementation, and applications. (pp. 493-518). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
    Downs, R. M., & Stea, D. (1974). Image and environment: Cognitive mapping and spatial behavior: Transaction Publishers.
    Farr, A. C., Kleinschmidt, T., Yarlagadda, P., & Mengersen, K. (2012). Wayfinding: A simple concept, a complex process. Transport Reviews, 32(6), 715-743.
    Fitzmaurice, G. W. (1993). Situated Information Spaces and Spatially Aware Palmtop Computers. Communications of the Acm, 36(7), 39-49.
    Fitzmaurice, G. W., Zhai, S., & Chignell, M. H. (1993). Virtual reality for palmtop computers. ACM Trans. Inf. Syst., 11(3), 197–218.
    Frisch, M., & Dachselt, R. (2010). Off-screen visualization techniques for class diagrams. Paper presented at the Proceedings of the 5th international symposium on Software visualization, Salt Lake City, Utah, USA.
    Gabriel, K. I., Hong, S. M., Chandra, M., Lonborg, S. D., & Barkley, C. L. (2011). Gender Differences in the Effects of Acute Stress on Spatial Ability. Sex Roles, 64(1-2), 81-89.
    Garling, T., Book, A., & Lindberg, E. (1984). Cognitive Mapping of Large-Scale Environments - the Interrelationship of Action Plans, Acquisition, and Orientation. Environment and Behavior, 16(1), 3-34.
    Geist, R., Allen, R., & Nowaczyk, R. (1986). Towards a model of user perception of computer systems response time. SIGCHI Bull., 17(SI), 249–253.
    Gluck, J., & Fitting, S. (2003). Spatial Strategy Selection: Interesting Incremental Information. International Journal of Testing, 3(3), 293-308.
    Goldiez, B. F., Ahmad, A. M., & Hancock, P. A. (2007). Effects of augmented reality display settings on human wayfinding performance. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 37(5), 839-845.
    Golledge, R. G. (1999a). Human wayfinding and cognitive maps. Wayfinding behavior: Cognitive mapping and other spatial processes, 5-45.
    Golledge, R. G. (1999b). Wayfinding behavior: Cognitive mapping and other spatial processes: JHU press.
    Golledge, R. G. (2003). Human wayfinding and cognitive maps The Colonization of Unfamiliar Landscapes (pp. 49-54): JHU Press.
    Gonçalves, T., Afonso, A. P., Carmo, M. B., & Pombinho, P. (2011). Evaluation of HaloDot: Visualization of Relevance of Off-Screen Objects with over Cluttering Prevention on Mobile Devices. Paper presented at the IFIP Conference on Human-Computer Interaction, Berlin, Heidelberg.
    Gonçalves, T., Afonso, A. P., Carmo, M. B., & Pombinho, P. (2012). Overview “vs” detail on mobile devices: a struggle for screen space. Paper presented at the Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and Computers, Birmingham, United Kingdom.
    Goodman, T. J., & Spence, R. (1981). The Effect of Computer System Response Time Variability on Interactive Graphical Problem Solving. IEEE Transactions on Systems, Man, and Cybernetics, 11(3), 207-216.
    Grubert, J., Langlotz, T., & Grasset, R. (2011). Augmented reality browser survey. Tehnical report, Institute for Computer Graphics and Vision, Graz University of Technology, Austria.
    Grubert, J., Pahud, M., Grasset, R., Schmalstieg, D., & Seichter, H. (2015). The utility of Magic Lens interfaces on handheld devices for touristic map navigation. Pervasive and Mobile Computing, 18, 88-103.
    Guiard, Y., Beaudouin-Lafon, M., Bastin, J., Pasveer, D., & Zhai, S. (2004). View size and pointing difficulty in multi-scale navigation. Paper presented at the Proceedings of the working conference on Advanced visual interfaces.
    Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P. (2008). Wedge: clutter-free visualization of off-screen locations. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy.
    Gustafson, S. G., & Irani, P. P. (2007). Comparing visualizations for tracking off-screen moving targets. Paper presented at the CHI ’07 Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA.
    Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In P. A. Hancock & N. Meshkati (Eds.), Advances in Psychology (Vol. 52, pp. 139-183): North-Holland.
    Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151-176.
    Henrie, R. L., Aron, R. H., Nelson, B. D., & Poole, D. A. (1997). Gender-related knowledge variations within geography. Sex Roles, 36(9-10), 605-623.
    Henze, N., & Boll, S. (2010). Evaluation of an off-screen visualization for magic lens and dynamic peephole interfaces. Paper presented at the Proceedings of the 12th international conference on Human computer interaction with mobile devices and services - MobileHCI '10, Lisbon, Portugal.
    HornbÆK, K., Bederson, B. B., & Plaisant, C. (2003). Navigation Patterns and Usability of Zoomable User Interfaces with and without an Overview. In B. B. Bederson & B. E. N. Shneiderman (Eds.), The Craft of Information Visualization (pp. 120-147). San Francisco: Morgan Kaufmann.
    Hoxmeier, J. A., & DiCesare, C. (2000). System response time and user satisfaction: An experimental study of browser-based applications. AMCIS 2000 Proceedings, 347.
    Huang, H., Schmidt, M., & Gartner, G. (2012). Spatial Knowledge Acquisition in the Context of GPS-Based Pedestrian Navigation. In L. Zentai & J. Reyes Nunez (Eds.), Maps for the Future: Children, Education and Internet (pp. 127-137). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Huang, K. C. (2008). Effects of computer icons and figure/background area ratios and color combinations on visual search performance on an LCD monitor. Displays, 29(3), 237-242.
    Hürst, W., & Bilyalov, T. (2010). Dynamic versus static peephole navigation of VR panoramas on handheld devices. Paper presented at the Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia, Limassol, Cyprus.
    Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74-82.
    Janelle, C. M., Hillman, C. H., Apparies, R. J., Murray, N. P., Meili, L., Fallon, E. A., & Hatfield, B. D. (2000). Expertise Differences in Cortical Activation and Gaze Behavior during Rifle Shooting. Journal of Sport and Exercise psychology, 22(2), 167.
    Jansen-Osmann, P., & Wiedenbauer, G. (2004). The influence of turns on distance cognition - New experimental approaches to clarify the route-angularity effect. Environment and Behavior, 36(6), 790-813.
    Jansen-Osmann, P., Wiedenbauer, G., Schmid, J., & Heil, M. (2006). The role of landmarks and structural maps regarding the wayfinding performance and spatial knowledge in adults and children. Manuscript submitted for publication.
    Jones, M., Marsden, G., Mohd-Nasir, N., Boone, K., & Buchanan, G. (1999). Improving Web interaction on small displays. Computer Networks-the International Journal of Computer and Telecommunications Networking, 31(11-16), 1129-1137.
    Jones, S., Jones, M., Marsden, G., Patel, D., & Cockburn, A. (2005). An evaluation of integrated zooming and scrolling on small screens. Int. J. Hum.-Comput. Stud., 63(3), 271–303.
    Kaufmann, B., & Ahlström, D. (2013). Studying spatial memory and map navigation performance on projector phones with peephole interaction. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France.
    Kitchin, R. M. (1994). Cognitive maps: What are they and why study them? Journal of Environmental Psychology, 14(1), 1-19.
    König, S. U., Clay, V., Nolte, D., Duesberg, L., Kuske, N., & König, P. (2019). Learning of Spatial Properties of a Large-Scale Virtual City With an Interactive Map. Frontiers in Human Neuroscience, 13(240).
    Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765-779.
    Lawton, C. A. (2010). Gender, spatial abilities, and wayfinding Handbook of gender research in psychology (pp. 317-341): Springer.
    Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9-10), 389-401.
    Li, R. (2020). Spatial Learning in Smart Applications: Enhancing Spatial Awareness through Visualized Off-Screen Landmarks on Mobile Devices. Annals of the American Association of Geographers, 110(2), 421-433.
    Li, R., & Zhao, J. (2017). Off-Screen Landmarks on Mobile Devices: Levels of Measurement and the Perception of Distance on Resized Icons. KI - Künstliche Intelligenz, 31(2), 141-149.
    Lin, H., Wu, F. G., & Cheng, Y. Y. (2013). Legibility and visual fatigue affected by text direction, screen size and character size on color LCD e-reader. Displays, 34(1), 49-58.
    Lindberg, T., & Nasanen, R. (2003). The effect of icon spacing and size on the speed of icon processing in the human visual system. Displays, 24(3), 111-120.
    Lorenz, C., & Neisser, U. (1986). Ecological and psychometric dimensions of spatial ability. Atlanta, GA: Emory Cognition Project, Emory University.
    Löwen, H., Krukar, J., & Schwering, A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149.
    Lynch, K. (1960). The image of the city (Vol. 11): MIT press.
    Ma, W.-Y., Bedner, I., Chang, G., Kuchinsky, A., & Zhang, H. (1999). Framework for adaptive content delivery in heterogeneous network environments. Paper presented at the Multimedia Computing and Networking 2000.
    Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21(1), 73-82.
    May, A. J., Ross, T., Bayer, S. H., & Tarkiainen, M. J. (2003). Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331-338.
    Mehra, S., Werkhoven, P., & Worring, M. (2006). Navigating on handheld displays: Dynamic versus static peephole navigation. ACM Transactions on Computer-Human Interaction (TOCHI), 13(4), 448–457.
    Meilinger, T., Knauff, M., & Bulthoff, H. H. (2008). Working memory in wayfinding-a dual task experiment in a virtual city. Cogn Sci, 32(4), 755-770.
    Miller, R. B. (1968). Response time in man-computer conversational transactions. Paper presented at the Proceedings of the December 9-11, 1968, fall joint computer conference, part I, San Francisco, California.
    Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. Spatial and temporal reasoning in geographic information systems, 143-154.
    Montello, D. R. (2005). Navigation. In A. Miyake & P. Shah (Eds.), The Cambridge Handbook of Visuospatial Thinking (pp. 257-294). Cambridge: Cambridge University Press.
    Montello, D. R., Richardson, A. E., Hegarty, M., & Provenza, M. (1999). A Comparison of Methods for Estimating Directions in Egocentric Space. Perception, 28(8), 981-1000.
    Morrison, A., Oulasvirta, A., Peltonen, P., Lemmela, S., Jacucci, G., Reitmayr, G., . . . Juustila, A. (2009). Like bees around the hive. Paper presented at the Proceedings of the 27th international conference on Human factors in computing systems - CHI 09, Boston, MA, USA.
    Müller, J., Rädle, R., Jetter, H.-C., & Reiterer, H. (2015). An Experimental Comparison of Vertical and Horizontal Dynamic Peephole Navigation. Paper presented at the Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea.
    Münzer, S., Zimmer, H. D., & Baus, J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology: Applied, 18(1), 18-37.
    Näsänen, R., & Ojanpää, H. (2003). Effect of image contrast and sharpness on visual search for computer icons. Displays, 24(3), 137-144.
    Nekrasovski, D., Bodnar, A., McGrenere, J., Guimbretière, F., & Munzner, T. (2006). An evaluation of pan & zoom and rubber sheet navigation with and without an overview. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montréal, Québec, Canada.
    Newman, E. L., Caplan, J. B., Kirschen, M. P., Korolev, I. O., Sekuler, R., & Kahana, M. J. (2007). Learning your way around town: How virtual taxicab drivers learn to use both layout and landmark information. Cognition, 104(2), 231-253.
    Ni, T., Bowman, D. A., & Chen, J. (2006). Increased display size and resolution improve task performance in Information-Rich Virtual Environments. Paper presented at the Proceedings of Graphics Interface 2006, Quebec, Canada.
    Nielsen, J. (1994). Usability engineering: Morgan Kaufmann.
    Nunes, A., Wickens, C., & Yin, S. (2006). Examining the viability of the Neisser search model in the flight domain and the benefits of highlighting in visual search. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
    O'keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map: Oxford: Clarendon Press.
    O'Laughlin, E. M., & Brubaker, B. S. (1998). Use of landmarks in cognitive mapping: Gender differences in self report versus performance. Personality and Individual Differences, 24(5), 595-601.
    O'Neill, M. J. (1991). Effects of signage and floor plan configuration on wayfinding accuracy. Environment and Behavior, 23(5), 553-574.
    Pahud, M., Hinckley, K., Iqbal, S., Sellen, A., & Buxton, B. (2013). Toward compound navigation tasks on mobiles via spatial manipulation. Paper presented at the Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services, Munich, Germany.
    Passini, R., Rainville, C., Marchand, N., & Joanette, Y. (1998). Wayfinding and dementia: Some research findings and a new look at design. Journal of Architectural and Planning Research, 15(2), 133-151.
    Plaisant, C., Carr, D., & Shneiderman, B. (1995). Image-Browser Taxonomy and Guidelines for Designers. IEEE Softw., 12(2), 21–32.
    Prinzel Iii, L. J., Comstock, J. J. R., Glaab, L. J., Kramer, L. J., Arthur, J. J., & Barry, J. S. (2004). The Efficacy of Head-Down and Head-Up Synthetic Vision Display Concepts for Retro- and Forward-Fit of Commercial Aircraft. The International Journal of Aviation Psychology, 14(1), 53-77.
    Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H., & Rogers, Y. (2014a). HuddleLamp: Spatially-Aware Mobile Displays for Ad-hoc Around-the-Table Collaboration. Paper presented at the Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, Dresden, Germany.
    Rädle, R., Jetter, H.-C., Müller, J., & Reiterer, H. (2014b). Bigger is not always better. Paper presented at the Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI '14, Toronto, Ontario, Canada.
    Reichenbacher, T. (2007). The concept of relevance in mobile maps. In G. Gartner, W. Cartwright, & M. P. Peterson (Eds.), Location Based Services and TeleCartography (pp. 231-246). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Richter, K.-F. (2007). A uniform handling of different landmark types in route directions. Paper presented at the International Conference on Spatial Information Theory.
    Rinner, C., Raubal, M., & Spigel, B. (2005). User interface design for location-based decision services. Paper presented at the 13th International Conference on GeoInformatics.
    Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction design: beyond human-computer interaction: John Wiley & Sons.
    Rohs, M., Schleicher, R., Schoning, J., Essl, G., Naumann, A., & Kruger, A. (2009). Impact of item density on the utility of visual context in magic lens interactions. Personal and Ubiquitous Computing, 13(8), 633-646.
    Rohs, M., Schöning, J., Raubal, M., Essl, G., & Krüger, A. (2007). Map navigation with mobile devices: virtual versus physical movement with and without visual context. Paper presented at the Proceedings of the 9th international conference on Multimodal interfaces, Nagoya, Aichi, Japan.
    Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L., & Carr, W. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 215-226.
    Roto, V., Popescu, A., Koivisto, A., & Vartiainen, E. (2006). Minimap: a web page visualization method for mobile phones. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montréal, Québec, Canada.
    Shneiderman, B. (1984). Response time and display rate in human performance with computers. ACM Comput. Surv., 16(3), 265–285.
    Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). Designing the User Interface: Strategies for Effective Human-Computer Interaction: Pearson.
    Siegel, A. W., & White, S. H. (1975). The Development of Spatial Representations of Large-Scale Environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (Vol. 10, pp. 9-55): JAI.
    Simmons, A. (2003). Spatial perception from a Cartesian point of view. Philosophical Topics, 31(1/2), 395-423.
    Spence, R. (2007). Information Visualization: Design for Interaction (2 ed.). London, UK: Pearson.
    Spindler, M., Stellmach, S., & Dachselt, R. (2009). PaperLens. Paper presented at the Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces - ITS '09, Banff, Alberta, Canada.
    Statista Inc. (2020). Forecast number of mobile devices worldwide from 2020 to 2024 (in billions)*. Retrieved from https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
    Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence-Teleoperators and Virtual Environments, 9(1), 69-83.
    Stelzer, E. M., & Wickens, C. D. (2006). Pilots strategically compensate for display enlargements in surveillance and flight control tasks. Hum Factors, 48(1), 166-181.
    Stuart, K. C., Jock, D. M., & Ben, S. (1999). Readings in information visualization: using vision to think: Morgan Kaufmann Publishers Inc.
    Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological review, 114 1, 71-103.
    Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol Rev, 55(4), 189-208.
    Tom, A., & Denis, M. (2003). Referring to landmark or street information in route directions: What difference does it make? Paper presented at the International Conference on Spatial Information Theory.
    Tseng, F.-Y., Chao, C.-J., Feng, W.-Y., & Hwang, S.-L. (2013). Effects of display modality on critical battlefield e-map search performance. Behaviour & Information Technology, 32(9), 888-901.
    Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull, 117(2), 250-270.
    Weiser, M. (2002). The computer for the 21st Century. IEEE pervasive computing, 1(1), 19-25.
    Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of Human Wayfinding Tasks: A Knowledge-Based Approach. Spatial Cognition & Computation, 9(2), 152-165.
    Wiener, J. M., & Mallot, H. A. (2003). 'Fine-to-coarse'route planning and navigation in regionalized environments. Spatial cognition and computation, 3(4), 331-358.
    Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100-110.
    Woodruff, A., Landay, J., & Stonebraker, M. (1998). Goal-directed zoom. Paper presented at the CHI 98 Conference Summary on Human Factors in Computing Systems, Los Angeles, California, USA.
    Wu, A., Zhang, W., & Zhang, X. (2009). Evaluation of Wayfinding Aids in Virtual Environment. International Journal of Human–Computer Interaction, 25(1), 1-21.
    Wu, F.-G., Lin, H., & You, M. (2011). The enhanced navigator for the touch screen: A comparative study on navigational techniques of web maps. Displays, 32(5), 284-295.
    Yee, K.-P. (2003). Peephole displays: pen interaction on spatially aware handheld computers. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA.
    Yeh, M., & Wickens, C. D. (2001). Attentional filtering in the design of electronic map displays: a comparison of color coding, intensity coding, and decluttering techniques. Hum Factors, 43(4), 543-562.
    Zellweger, P. T., Mackinlay, J. D., Good, L., Stefik, M., & Baudisch, P. (2003). City lights: contextual views in minimal space. Paper presented at the CHI ’03 Extended Abstracts on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA.

    QR CODE