簡易檢索 / 詳目顯示

研究生: 蘇可耕
ke-keng su
論文名稱: 應用於驅動大氣電漿之高壓短脈衝電漿產生器設計與實現
Design and Implementation of High-Voltage Short-Pulse Plasma Generator for Driving Atmospheric Plasma
指導教授: 林長華
Chang-Hua Lin
口試委員: 林長華
Chang-Hua Lin
白凱仁
Kai-Jun Pai
劉添華
Yian-Hua Liu
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 電漿馬克斯脈衝電路高壓短脈衝電源數位控制器表面處理
外文關鍵詞: plasma, marx pulse circuit, high-voltage short-pulse power supply, digital controller, surface treatment
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製一部應用於驅動大氣電漿之高壓短脈衝電漿產生器。所提之系統包括:功率因數修正器、高壓短脈衝電路、數位控制器、人機介面、通訊模組與電漿管。首先,本系統主電路為兩級式架構,第一級電路採用主動式功因修正電路,以提升系統之功因值,第二級為所提之改良型馬克斯短脈衝電路,主要是以傳統的馬克斯電路輸出高壓負脈衝,並利用變壓器漏感與二極體接面電容諧振,以輸出所需之高壓短脈衝;其次,系統控制方面使用數位控制器結合無線通訊模組以及人機介面,以達到遠端監控及高壓隔離的目的;再者,根據理論推導之系統參數進行電腦模擬,以驗證所設計系統之可行性;最後,再將兩級式主電路、數位控制器、人機介面與通訊模組進行整合,並實際驅動大氣電漿負載及進行玻璃表面處理實驗,以驗證所提系統之正確性及有效性。


This thesis aims to develop a high-voltage short-pulse plasma generator for driving atmospheric plasma. The proposed system includes: power factor corrector, high-voltage short-pulse circuit, digital controller, human-machine interface, communication module and plasma tube. First, the main circuit of this system is a two-stage structure. The first stage is an active power factor correction circuit to improve the power factor of the system. The second stage is a proposed modified Marx-short-pulse-circuit. The traditional Marx circuit is used to provide negative high-voltage pulse, and the leakage inductance of the transformer is used to resonate with the junction capacitance of the output diode to generate the required high-voltage short-pulse. Moreover, the digital controller integrates a wireless communication module and a human-machine interface to achieve remote monitoring and high-voltage isolation. Futuremore, computer simulations are conducted based on the theoretically derived system parameters to verify the feasibility of the designed system. Finally, the two-stage main circuit, digital controller, human-machine interface and communication module are integrated to drive atmospheric plasma, and applied to glass surface treatment experiments to verify the effectiveness of the proposed system.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 6 第二章 大氣電漿產生系統之架構與分析 8 2.1 高壓短脈衝電漿產生器系統 8 2.2 脈衝寬度之定義 8 2.3 高壓短脈衝電源之分析與設計 11 2.3.1 馬克斯電路(Marx generator) 之工作模式與數學分析 11 2.3.2 短脈衝電路之工作模式與數學分析 19 2.3.3 短脈衝電路輸出脈寬之估測 29 2.3.4 馬克斯短脈衝電路之工作模式與數學分析 32 2.4 電漿之物理特性及等效模型 38 2.4.1 電漿管之結構 39 2.4.2 估測電漿負載之等效模型參數 40 第三章 輔助系統與數位控制器之設計與分析 44 3.1 功率因數修正電路 44 3.1.1 功率因數與諧波定義 44 3.1.2 功率因數修正電路之架構 47 3.1.3 升壓型功率因數修正電路之架構與控制法 49 3.2 數位控制器之設計 53 3.2.1 數位控制器dsPIC33FJ64GS606之介紹 54 3.2.2 數位控制器與週邊元件之連結 58 3.2.3 系統之控制流程 59 3.3 人機介面之設計與實現 62 3.3.2 無線通訊模組 65 3.4 高壓電路之絕緣考量 67 3.4.1 空間直線距離與爬電距離之安全考量 68 3.4.2 馬克斯短脈衝電路絕緣考量 73 3.4.3 輔助電源之說明 74 第四章 系統規格及設計考量 76 4.1 二次側短脈衝電路設計 77 4.1.1 設計步驟 77 4.2 一次側馬克斯電路設計 82 4.2.1 設計步驟 82 4.2.2 一次側功率元件之選用 84 4.3 高速PWM之驅動電路設計 84 第五章 電路模擬與實測結果 86 5.1 系統規格 86 5.1.1 系統實測之環境建置 86 5.1.2 電腦模擬之條件 89 5.2 未加電漿負載之不同重複率模擬與實測結果 90 5.3 加入電漿負載之不同重複率模擬與實測結果 98 5.4 表面處理之親水性實驗 104 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 108 參考文獻 109

[1] Bharagv, R. Kumar, S. Tapan, L. Gupta and A. R. Gupta, "High Voltage and its Applications: A Review," 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 2018, pp. 1-6.
[2] 財團法人塑膠工業技術發展中心,“淺談醫用高分子醫材改質技術之現況與趨勢” [Online].Available: https://www.pidc.org.tw/materials.php?id=626
[3] 游重光,“翻轉製成綠色製造再升級”[Online].Available: http://www.creating-nanotech.com/big5/download/GreenPlasmaProcess.pdf?list=download&path=GreenPlasmaProcess.pdf
[4] 徐逸明,“常壓電漿原理、技術與應用”,馗鼎奈米科技股份有限公司,西元2011年五月。
[5] A. Bharagv, R. Kumar, S. Tapan, L. Gupta and A. R. Gupta, "High Voltage and its Applications: A Review," 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 2018, pp. 1-6.
[6] J. O. Rossi, J. J. Barroso, M. Ueda and G. Da Silva, "A 4-kV/2-A/5-kHz Compact Modulator for Nitrogen Plasma Ion Implantation,"IEEE Transactions on Plasma Science, vol. 34, no. 5, pp. 1757-1765, Oct. 2006.
[7] F. Clement, P. Svarnas, L. Marlin, S. Paquet, A. Gkelios and B. Held, "Atmospheric Pressure Argon Plasma Jet in Pulsed Monopolar High Voltage Excitation Conditions,"IEEE Transactions on Plasma Science, vol. 39, no. 11, pp. 2362-2363, Nov. 2011.
[8] 郭福升,“大面積常壓電漿技術之研究”,國立成功大學化學系研究所碩士論文,西元2003年七月。
[9] J. O. Rossi, E. Schamiloglu and M. Ueda, "Advances in High-Voltage Modulators for Applications in Pulsed Power and Plasma-Based Ion Implantation,"IEEE Transactions on Plasma Science, vol. 39, no. 11, pp. 3033-3044, Nov. 2011.
[10] T. Shao et al., "A Cascaded Microsecond-Pulse Generator for Discharge Applications,"IEEE Transactions on Plasma Science, vol. 42, no. 6, pp. 1721-1728, June 2014.
[11] J. Florian, N. Merbahi, G. Wattieaux, J. Plewa and M. Yousfi, "Comparative Studies of Double Dielectric Barrier Discharge and Microwave Argon Plasma Jets at Atmospheric Pressure for Biomedical Applications,"IEEE Transactions on Plasma Science, vol. 43, no. 9, pp. 3332-3338, Sept. 2015.
[12] K. Bera, S. Rauf and K. Collins, "Control of Plasma Uniformity Using Phase Difference in a VHF Plasma Process Chamber,"IEEE Transactions on Plasma Science, vol. 36, no. 4, pp. 1366-1367, Aug. 2008
[13] T. Heeren, T. Ueno, Douyan Wang, T. Namihira, S. Katsuki and H. Akiyama, "Novel dual Marx Generator for microplasma applications,"IEEE Transactions on Plasma Science, vol. 33, no. 4, pp. 1205-1209, Aug. 2005.
[14] Y. Kim et al, "Plasma Apparatuses for Biomedical Applications," IEEE Transactions on Plasma Science, vol. 43, no. 4, pp. 944-950, April 2015.
[15] C. Gong, X. Tian, S. Yang, R. K. Y. Fu and P. K. Chu, "Surface Treatment of Polyethylene Terephthalate Using Plasma Ion Implantation Based on Direct Coupling of RF and High-Voltage Pulse," IEEE Transactions on Plasma Science, vol. 40, no. 2, pp. 487-491, Feb. 2012.
[16] 任耿良,“應用於射頻電漿電源E類換流器之研製”,國立成功大學電機資訊學院電機工程學系電力電子產業碩士專班碩士論文,西元2013年七月。
[17] M. Rezanejad, A. Sheikholeslami and J. Adabi, "High-Voltage Pulsed Power Supply to Generate Wide Pulses Combined With Narrow Pulses," IEEE Transactions on Plasma Science, vol. 42, no. 7, pp. 1894-1901, July 2014.
[18] Transient Plasma Systems Inc,What is pulsed power? [Online].Available:
http://transientplasmasystems.com/technology/#1536710958182-fb4fc963-b8471548370943471
[19] J. Mankowski and M. Kristiansen, "A review of short pulse generator technology, " IEEE Transactions on Plasma Science, vol. 28, no. 1, pp. 102-108, Feb. 2000.
[20] 李仁豪,“可調式高壓脈衝電源供應器之模組化設計”,國立台灣科技大學電機工程系碩士學位論文,西元2019年七月。
[21] S. M. H. Hosseini, H. R. Ghafourinam and M. H. Oshtaghi, "Modeling and Construction of Marx Impulse Generator Based on Boost Converter Pulse-Forming Network," IEEE Transactions on Plasma Science, vol. 46, no. 10, pp. 3257-3264, Oct. 2018.
[22] C. Yao, X. Zhang, F. Guo, S. Dong, Y. Mi and C. Sun, "FPGA-Controlled All-Solid-State Nanosecond Pulse Generator for Biological Applications," IEEE Transactions on Plasma Science, vol. 40, no. 10, pp. 2366-2372, Oct. 2012.
[23] X. Wang, Q. Huang, L. Xiong, L. Xu, Q. Chen and Q. Xiong, "A Compact All-Solid-State Repetitive Pulsed Power Modulator Based on Marx Generator and Pulse Transformer," IEEE Transactions on Plasma Science, vol. 46, no. 6, pp. 2072-2078, June 2018.
[24] K. Liu, Y. Luo and J. Qiu, "A Repetitive High Voltage Pulse Adder Based on Solid State Switches,"IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1076-1080, August 2009.
[25] L. M. Redondo, H. Canacsinh and J. F. Silva, "Generalized solid-state Marx modulator topology," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1037-1042, August 2009.
[26] S. Ahn, H. Ryoo, J. Gong and S. Jang, "Robust Design of a Solid-State Pulsed Power Modulator Based on Modular Stacking Structure,"IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2570-2577, May 2015.
[27] S. Dong, C. Yao, N. Yang, T. Luo, Y. Zhou and C. Wang, "Solid-State Nanosecond-Pulse Plasma Jet Apparatus Based on Marx Structure With Crowbar Switches," IEEE Transactions on Plasma Science, vol. 44, no. 12, pp. 3353-3360, Dec. 2016.
[28] 史曉蕾、陳錦暉、王冠文等,“一種基於磁飽和變壓器的DSRD脈衝電源設計”,強激光與粒子束,第32卷,第2期,西元2020年2月。
[29] J. M. Sanders, A. Kuthi, Y. Wu, P. T. Vernier and M. A. Gundersen, "A linear, single-stage, nanosecond pulse generator for delivering intense electric fields to biological loads," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1048-1054, August 2009.
[30] A. S. Kesar, L. M. Merensky, M. Ogranovich, A. F. Kardo-Sysoev and D. Shmilovitz, "6-kV, 130-ps rise-time pulsed-power circuit featuring cascaded compression by fast recovery and avalanche diodes," Electronics Letters, vol. 49, no. 24, pp. 1539-1540, 21 November 2013.
[31] 友聲電子公司,儀器&測試系統[Online].Available:
http://www.you-shang.com.tw/psw.html
[32] T. Sakamoto, A. Nami, M. Akiyama and H. Akiyama, "A Repetitive Solid State Marx-Type Pulsed Power Generator Using Multistage Switch-Capacitor Cells," IEEE Transactions on Plasma Science, vol. 40, no. 10, pp. 2316-2321, Oct. 2012.
[33] 陳克紹,“表面電漿改質技術在生物醫學工程之應用”,化工技術,第17卷,第8期,西元2009年8月。
[34] 陳威任,“應用於電漿負載具數位控制器之全橋諧振換流器”,大同大學電機工程研究所碩士論文,西元2016年7月。
[35] 洪昭南、郭有斌,“電漿反應器與原理”,化工技術,第九卷,第十期,pp. 156-176,西元2001年。
[36] J.M. Alonso, J. Garcia, A.J. Calleja, J. Ribas, and J. Cardesin, "Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter,"IEEE Trans. Ind. Appl, vol. 41, no. 5, pp. 1364-1372, Sep. 2005.
[37] 宋自恆、林慶仁,“功率因數修正電路之原理與常用元件規格”,西元2004年4月。
[38] J. J. Cheng, "Implementation of A Flyback Converter with Single-Stage Power Factor Correction."Department of Electrical Engineering, National Sun Yat-Sen University Kaohsiung, Taiwan, Republic of China, 1997, pp. 21-22.
[39] 楊鈞傑,“具數位控制補償迴路之電源轉換器研製”,國立台灣科技大學電機工程系碩士學位論文,西元2018年7月。
[40] 鄭凱方,“主動式功因修正電路模型建立與設計”,國立中山大學電機工程學系碩士學位論文,西元2005年7月。
[41] K. Schenk and S. Cuk, "A single-switch single-stage active power factor corrector with high quality input and output,"IEEE Power Electron. Conf., pp.385-391, 1997.
[42] Abrahaml. Pressman, Keith Billings, and Taylor Morey, "Switching Power Supply (Third Edition)",全華圖書股份有限公司,西元2012年。
[43] 黃建銘,“可應用於離子風之連續可調高壓電源供應器”,大同大學電機工程研究所碩士論文,西元2014年1月 。
[44] 謝尚伯,“結合循環式數位調光技術之多管冷陰極螢光燈電子安定器”,大同大學電機工程研究所碩士論文,西元2010年1月。
[45] 黃智強,“半橋式功率因數修正器雙電容不平衡修正之研製”,國立台北科技大學電力電子產業研發碩士專班碩士學位論文,西元2007年七月。
[46] 巫翔凱,“具有功率因數修正功能之CC-CC/CC-CV可選擇兩段式充電器”,國立台北科技大學電機工程系碩士學位論文,西元2008年12月。
[47] 蔡宏群,“以微控器為基礎之單相交流穩壓器研製”,大同大學電機工程研究所碩士論文,西元2009年1月。
[48] 林建豪,“可調式70kV高壓電源轉換器研製及其實務考量”,國立台灣科技大學電機工程系碩士學位論文,西元2020年7月。
[49] Microchip, dsPIC33FJ64GS606 datasheet, "16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators", 2009-2012.
[50] Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
[51] Anant S Kamath, Kannan Soundarapandian, High-voltage reinforced isolation:definitions and test methodologies datasheet, Texas Instruments
[52] Infineon Technologies, Electrical safety and isolation in high voltage discretecomponent applications and design hints, Application Note AN 2012-10 V1.0 October 2012.
[53] IEC 60950 safety specific standards datasheet.
[54] MURATA, MGJ2D242005SC , "Optimised bipolar output voltages for IGBT/ Mosfet gate drives" 2019.
[55] TOSHIBA, TLP250H, "Buffer logic type (totem pole output) " 2012.
[56] 欣創達科技有限公司,接觸角測量方法[Online].Available:
http://www.sindatek.com/Method.htm
[57] TDK, B64290L0668X038, "Ferrites and accessories " 2017.
[58] Diodes Incorporated, FR307, "FR301-FR307 " .

無法下載圖示 全文公開日期 2026/01/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE