簡易檢索 / 詳目顯示

研究生: 邱冠智
Guan-Zhi Qiu
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 178
中文關鍵詞: 氧化石墨烯熱脫層氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝之熱脫層氧化石墨烯抗收縮劑環=環氧樹脂聚合固化體積收縮機械性質熱傳導性質導電性質接枝效率
外文關鍵詞: slane-grafted graphene oxide, silane-grafted thermally reduced graphene oxide, epoxy resins, curing, grafting efficiency
相關次數: 點閱:427下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討添加氧化石墨烯(GO)、矽烷接枝氧化石墨烯(sg-GO)、熱脫層氧化石墨烯(TRGO)以及矽烷接枝熱脫層氧化石墨烯(sg-TRGO)等數種特用添加劑的合成及其對環氧樹脂(EPR)/ 4,4-二氨基二苯甲烷(DDM)/特用添加劑三成份系統於100℃/180℃階段性恆溫固化之微觀型態結構、體積收縮、機械性質、熱傳導及導電性之影響的影響。
熱脫層氧化石墨烯(TRGO)是將氧化石墨烯(GO)置於1050℃的高溫爐中30秒合成熱脫層而得;GO則是將平均粒徑為75μm的天然石墨粉以改良Hummers 法製得。
矽烷接枝氧化石墨烯(sg-GO)係帶有環氧基團的矽烷偶合劑,即(3-縮水甘油氧基丙基)三甲氧基矽烷(GPS),做為表面改質劑,並在不同反應溫度(60℃-100℃)及時間(1.5 hr-72 hr)、使用不同溶劑(如甲苯及乙醇)及不同反應次數下(一或三次反應),以進行GO之表面處理而得。
另外,吾人以傅立葉轉換紅外光分析儀(FTIR)的定量分析,計算一次與三次反應下之接枝密度,最後吾人將合成之添加劑(GO, sg-GO, TRGO, sg-TRGO)添加到EPR中,亦研究其對EPR/DDM/添加劑三成分系統聚合固化後之體積收縮、機械性質、熱傳導及導電性之影響。


The effects of graphene oxide (GO), low grafting density of silane-grafted graphene oxide (LD-sg-GO), high grafting density of silane-grafted graphene oxide (HD-sg-GO), thermally reduced graphene oxide (TRGO), low grafting density of silane-grafted thermally reduced graphene oxide (LD-sg-TRGO) and high grafting density of silane-grafted thermally reduced graphene oxide (HD-sg-TRGO) as special additives on the cured sample morphologies, volume shrinkage characteristics , mechanical properties thermal conductivities and electrical properties of the Epoxy/DDM/GO(or TRGO) ternary system cured after a stepwise isthermal process of 100℃/180℃ were investigated.
The thermally reduced graphene oxide (TRGO) was produced by placing graphene oxide (GO) in a high-temperature furnace kept at 1050℃, which was synthesized from natural graphites with average particle size of 75μm by a modified Hummers method.
The silane-grafted GO (sg-GO) or silane-grafted TRGO (sg-TRGO) was synthesized by using the silane coupling agent bearing epoxy functional group, namely, γ-glycidyloxy propyl trimethoxy silane (GPS), as a surface modifier for the surface treatment of GO at varied reaction temperatures (60 oC-100 oC) and reaction times (1.5 hr-72 hr), with different times of reaction for surface treatment between GO and GPS (n=1 or 3), using different solvents, such as toluene and ethyl alcohol. In the synthesis of sg-GO a fixed weight ratio of GO/GPS/solvent at 1:5:94 was employed, and the grafting density and grafting efficiency measured for the sg-GO was by FTIR.

摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XIV 第1章 緒論 1 1.1 前言 1 1.2 研究範疇 2 第2章 文獻回顧 3 2.1 不飽和聚酯(Unsaturated polyester, UP) 3 2.2 乙烯基酯樹脂 (Vinyl Ester Resin , VER) 4 2.3 環氧樹脂(Epoxy Resin, EPR) 5 2.3.1 環氧樹脂之硬化劑 7 2.3.2 環氧樹脂硬化之流變行為 10 2.4 抗收縮劑(Low-Profile Additives, LPA) 11 2.5 不飽和聚酯(UP)樹脂和苯乙烯(St)之交聯共聚合反應 12 2.6 矽烷偶合劑(Silane Coupling Agents) 15 2.6.1 (3-縮水甘油氧基丙基)三甲氧基矽烷(GPS) 18 2.7 石墨烯/高分子奈米複合材料 20 第3章 實驗方法及設備 32 3.1 實驗原料 32 3.1.1 環氧樹脂 32 3.1.2 特用添加劑 34 3.1.3 實驗藥品 34 3.2 實驗儀器 37 3.3 實驗步驟 40 3.3.1 製備氧化石墨烯(GO)[55-58] 40 3.3.2 改變使用溶劑、反應溫度及反應時間的操作條件,以製備不同接枝密度矽烷偶合劑改質之氧化石墨烯(sg-GO) 40 3.3.3 製備低接枝密度矽烷偶合劑接枝氧化石墨烯(LD-sg-GO)[42] 45 3.3.4 製備高密度接枝矽烷偶合劑改質之氧化石墨烯(HD-sg-GO) 45 3.3.5 製備熱脫層氧化石墨烯(TRGO)[61] 46 3.3.6 製備低接枝密度矽烷偶合劑接枝熱脫層氧化石墨烯(LD-sg-GO) 46 3.3.7 製備高密度接枝矽烷偶合劑改質之熱脫層氧化石墨烯 (HD-sg-TRGO) 46 3.3.8 製備Neat EPR(n=0.16)/DDM溶液與固化試片 47 3.3.9 EPR(n=0.16)/DDM/Additive三成份溶液與固化試片製備 48 3.3.10 體積變化量測-密度法 49 3.3.11 廣角X-ray散射儀(WAXS) 49 3.3.12 熱重分析儀(TGA) 49 3.3.13 傅立葉轉換紅外線(FTIR)光譜分析 50 3.3.14 熱傳導係數測定 52 3.3.15 表面電阻量測 52 3.3.16 掃描式電子顯微鏡(SEM) 53 3.3.17 穿透式電子顯微鏡(TEM) 53 3.3.18 拉伸測試(Tensile Tester) 54 3.3.19 耐衝擊測試 54 第4章 結果與討論 55 4.1 微結構分析 55 4.1.1 廣角X-ray散射儀(WAXS) 55 4.1.2 傅立葉紅外線光譜儀(FTIR)之定性分析 58 4.1.3 有機化改質之GO利用FTIR之定量分析 60 4.1.4 有機化改質之TRGO利用FTIR之定量分析 74 4.2 熱性質分析 85 4.2.1 熱重分析儀(TGA) 85 4.2.2 熱傳導係數測定 87 4.3 導電性質測定 89 4.4 SEM微觀型態結構分析 91 4.4.1 Epoxy/ DDM/ GO 三成分系統 91 4.4.2 Epoxy/ DDM/ LD-sg-GO 三成分系統 97 4.4.3 Epoxy/ DDM/ HD-sg-GO 三成分系統 102 4.4.4 Epoxy/ DDM/ TRGO 三成分系統 107 4.4.5 Epoxy/ DDM/ LD-sg-TRGO 三成分系統 110 4.5 體積收縮特性 113 4.5.1 Neat Epoxy/DDM雙成分系統 113 4.5.2 Epoxy/ DDM/ GO 三成分系統 115 4.5.3 Epoxy/ DDM/ LD-sg-GO 三成分系統 117 4.5.4 Epoxy/ DDM/ HD-sg-GO 三成分系統 119 4.5.5 Epoxy/ DDM/ TRGO 三成分系統 121 4.5.6 Epoxy/ DDM/ LD-sg-TRGO 三成分系統 123 4.6 機械性質分析 125 4.6.1 耐衝擊測試 125 4.6.1.1 Neat Epoxy/DDM雙成分系統 125 4.6.1.2 Epoxy/ DDM/ GO 三成分系統 127 4.6.1.3 Epoxy/ DDM/ LD-sg-GO 三成分系統 129 4.6.1.4 Epoxy/ DDM/ HD-sg-GO 三成分系統 131 4.6.1.5 Epoxy/ DDM/ TRGO 三成分系統 133 4.6.1.6 Epoxy/ DDM/ LD-sg-TRGO 三成分系統 135 4.6.2 拉力測試 137 4.6.2.1 Neat Epoxy/DDM雙成分系統 137 4.6.2.2 Epoxy/ DDM/ GO 三成分系統 140 4.6.2.3 Epoxy/ DDM/ LD-sg-GO 三成分系統 143 4.6.2.4 Epoxy/ DDM/ HD-sg-GO 三成分系統 146 4.6.2.5 Epoxy/ DDM/ TRGO 三成分系統 149 4.6.2.6 Epoxy/ DDM/ LD-sg-TRGO 三成分系統 152 第5章 結論 155 第6章 建議與未來工作 157 第7章 參考文獻 158

第7章 參考文獻
[1] 陳東課, 環氧樹脂在積層板之應用, 化工技術第四卷第五期1999.
[2] C.W. Jang, S. Nouranian, T.E. Lacy, S.R. Gwaltney, H. Toghiani, C.U. Pittman, Carbon 50 (2012) 748-760.
[3] W. Posthumus, P. Magusin, J.C.M. Brokken-Zijp, A.H.A. Tinnemans, R. van der Linde, J. Colloid Interface Sci. 269 (2004) 109-116.
[4] R. Burns, Polyester Molding Compounds, Taylor & Francis1982.
[5] 鍾宛倫, 碩士論文. 台灣科技大學 (2014).
[6] 江文慶, 碩士論文. 台灣科技大學 (1996).
[7] S.V. Levchik, G. Camino, M.P. Luda, L. Costa, G. Muller, B. Costes, Polym Degradation Stab 60 (1998) 169-183.
[8] T.D.C. Company, PCT Int.Appl.WO986/07067, 1986.
[9] W.H. Liao, H.W. Tien, S.T. Hsiao, S.M. Li, Y.S. Wang, Y.L. Huang, S.Y. Yang, C.C.M. Ma, Y.F. Wut, ACS Appl. Mater. Interfaces 5 (2013) 3975-3982.
[10] 黃智偉, 碩士論文. 台灣科技大學 (2014).
[11] P.F. Bruins, P.I.o.N. York, Unsaturated Polyester Technology, Gordon and Breach(1976).
[12] P.F. Bruins, P.I.o.N. York, Unsaturated Polyester Technology, Gordon and Breach ,(1976), P28.
[13] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 1999.
[14] B. Ellis, Chemistry and technology of epoxy resins, Springer1993.
[15] W. Ashcroft, B. Ellis, Chapmann and Hall, London (1993).
[16] K. Gaw, M. Jikei, M.-a. Kakimoto, Y. Imai, A. Mochjizuki, Polymer 38 (1997) 4413-4415.
[17] L. Becker, D. Lenoir, G. Matuschek, A. Kettrup, Journal of Analytical and Applied Pyrolysis 60 (2001) 55-67.
[18] M.A. Boyle, C.J. Martin, J.D. Neuner, in ASM Handbook Volume 21 Composites, ASM International; Material Park: Ohio,, ASM international2001.
[19] 邱淑微, 碩士論文. 台灣科技大學 (2011).
[20] E. Bartkus, C. Kroekel, 1970
[21] V.A. Pattison, R.R. Hindersinn, W.T. Schwartz, Journal of Applied Polymer Science 18 (1974) 2763-2771.
[22] V.A. Pattison, R.R. Hindersinn, W.T. Schwartz, Journal of Applied Polymer Science 19 (1975) 3045-3050.
[23] H.G. Kia, Sheet Molding Compounds: Science and Technology, Hanser1993.
[24] Y.J. Huang, C.C. Su, Journal of applied polymer science 55 (1995) 305-322.
[25] Y.-J. Huang, L.-D. Chen, Polymer 39 (1998) 7049-7059.
[26] Y.-J. Huang, J.C. Horng, Polymer 39 (1998) 3683-3695.
[27] L. Suspène, D. Fourquier, Y.-S. Yang, Polymer 32 (1991) 1593-1604.
[28] W. Li, L. Lee, K. Hsu, Polymer 41 (2000) 711-717.
[29] C.B. Bucknall, I.K. Partridge, M.J. Phillips, Polymer 32 (1991) 636-640.
[30] Y.J. Huang, T.S. Chen, J.G. Huang, F.H. Lee, Journal of applied polymer science 89 (2003) 3336-3346.
[31] Y.-J. Huang, C.-M. Liang, Polymer 37 (1996) 401-412.
[32] J.P. Dong, J.H. Lee, D.H. Lai, Y.J. Huang, Journal of applied polymer science 98 (2005) 264-275.
[33] Y. Yang, L.J. Lee, Polymer 29 (1988) 1793-1800.
[34] 盧天智, 碩士論文. 台灣科技大學 (1989).
[35] K. Horie, I. Mita, H. Kambe, Journal of Polymer Science Part A: Polymer Chemistry 7 (1969) 2561-2573.
[36] E.P. Plueddemann, Silane Coupling Agents, Springer US2013.
[37] E.P. Plueddemann, H.A. Clark, Mod. Plast 40(6) (1963) 133.
[38] F. Osterholtz, E. Pohl, Surfaces and Interfaces.vol 1 (1986) 481-500.
[39] A. Di Gianni, E. Amerio, O. Monticelli, R. Bongiovanni, Applied Clay Science 42 (2008) 116-124.
[40] B. Ahmadi-Moghadam, M. Sharafimasooleh, S. Shadlou, F. Taheri, Materials & Design 66 (2015) 142-149.
[41] H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43 (2010) 6515-6530.
[42] Y.J. Wan, L.X. Gong, L.C. Tang, L.B. Wu, J.X. Jiang, Compos. Pt. A-Appl. Sci. Manuf. 64 (2014) 79-89.
[43] Y.J. Wan, L.C. Tang, L.X. Gong, D. Yan, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, Carbon 69 (2014) 467-480.
[44] C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, M.D. Gutiérrez, F. Rodríguez-Reinoso, R. Menéndez, Carbon 52 (2013) 476-485.
[45] H. Kim, Y. Miura, C.W. Macosko, Chemistry of Materials 22 (2010) 3441-3450.
[46] J. Zang, Y.J. Wan, L. Zhao, L.C. Tang, Macromolecular Materials and Engineering 300 (2015) 737-749.
[47] A.-K. Appel, R. Thomann, R. Mülhaupt, Polymer 53 (2012) 4931-4939.
[48] X. Wang, W. Xing, L. Song, B. Yu, Y. Hu, G.H. Yeoh, Reactive and Functional Polymers 73 (2013) 854-858.
[49] A. Chaturvedi, A. Tiwari, A. Tiwari, Adv Mater Lett 4 (2013) 656-661.
[50] O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc, N. Koratkar, Carbon 101 (2016) 239-244.
[51] S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46 (2008) 806-817.
[52] M. Kim, Y. Kim, S.H. Baeck, S.E. Shim, Carbon Lett. 16 (2015) 34-40.
[53] 詹承穎, 碩士論文. 台灣科技大學 (2018).
[54] N. Yuliana, M.S. Thesis, National Taiwan University of Science and Technology, 2013
[55] W.S. Hummers Jr, R.E. Offeman, Journal of the American Chemical Society 80 (1958) 1339-1339.
[56] H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, The Journal of Physical Chemistry B 110 (2006) 8535-8539.
[57] Y.F. Yang, J. Wang, J. Zhang, J.C. Liu, X.L. Yang, H.Y. Zhao, Langmuir 25 (2009) 11808-11814.
[58] F. Beckert, C. Friedrich, R. Thomann, R. Mülhaupt, Macromolecules 45 (2012) 7083-7090.
[59] 王妤榛, 碩士論文. 台灣科技大學 (2016).
[60] S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Macromolecules 46 (2013) 3199-3214.
[61] M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, Chemistry of materials 19 (2007) 4396-4404.
[62] S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, A. Fina, Polymer 102 (2016) 292-300.
[63] H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, E. Zeinali, M. Salami-Kalajahi, Journal of Polymer Research 21 (2014) 333.
[64] C. Hontoria-Lucas, A. López-Peinado, J.d.D. López-González, M. Rojas-Cervantes, R. Martin-Aranda, Carbon 33 (1995) 1585-1592.
[65] G. Xue, J.L. Koenig, H. Ishida, D.D. Wheeler, Rubber chemistry and technology 64 (1991) 162-171.
[66] N. Suzuki, H. Ishida, 1996
[67] P. Innocenzi, G. Brusatin, M. Guglielmi, R. Bertani, Chemistry of Materials 11 (1999) 1672-1679.
[68] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Elsevier Science1991.
[69] J. Coates, Encyclopedia of analytical chemistry (2000).
[70] L.G.P. Moraes, R.S.F. Rocha, L.M. Menegazzo, E.B.d. Araújo, K. Yukimito, J.C.S. Moraes, Journal of Applied Oral Science 16 (2008) 145-149.
[71] R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, M. Tian, ACS Appl. Mater. Interfaces 6 (2014) 21730-21738.
[72] N. Rubio, H. Au, H.S. Leese, S. Hu, A.J. Clancy, M.S. Shaffer, Macromolecules 50 (2017) 7070-7079.
[73] R. Aradhana, S. Mohanty, S.K. Nayak, Polymer 141 (2018) 109-123.
[74] 廖婉儒, 碩士論文. 台灣科技大學 (2018).
[75] J. Choi, J. Harcup, A.F. Yee, Q. Zhu, R.M. Laine, Journal of the American Chemical Society 123 (2001) 11420-11430.

QR CODE