簡易檢索 / 詳目顯示

研究生: 陳鈞瑋
Jyun-Wei Chen
論文名稱: 以反應式離子束濺鍍法沉積含氮p型氧化鋅薄膜
Nitrogen doped p-type ZnO prepared by reactive ion beam sputter deposition
指導教授: 趙良君
Liang-chiun Chao
口試委員: 黃鶯聲
Ying-sheng Huang
何清華
Ching-hwa Ho
何志浩
Jr-hau He
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 含氮p型氧化鋅離子束濺鍍陶瓷薄膜
外文關鍵詞: Nitrogen doped p-type ZnO, IBSD, ceramic film
相關次數: 點閱:367下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用反應式離子束濺鍍法,以氧化鋅為緩衝層並於300度C下以石英及玻璃基板沉積含氮p型氧化鋅薄膜。XRD分析以氮流量0.5及5 sccm沉積之薄膜,5 sccm其(002)繞射峰值往小角度偏移而0.5 sccm樣品沿(002)方向成長不偏移,分別代表分子氮取代氧及原子氮取代氧的位置,600度C退火後(002) 繞射峰值半高寬變大,代表氮擴散出薄膜形成空缺等缺陷。拉曼光譜儀分析含氮氧化鋅薄膜得到275、436、582 cm-1三個峰值,證明氮已入氧化鋅,經三分鐘500度C退火後可得最強的582 cm-1峰值,顯示氮在此退火條件下被活化。隨著退火溫度升高,275、582 cm-1峰值逐漸降低,而436 cm-1峰值逐漸明顯,代表氮擴散出薄膜。SIMS分析氮摻雜的濃度約為1021 cm-3,提升氮流量析發現氮濃度並沒有明顯提昇代表氮的固態溶解度(Solubility)低,隨著退火溫度升高發現氮濃度有明顯的下降代表氮擴散出薄膜。霍爾量測分析得到在氮流量0.5 sccm時可得p型氧化鋅薄膜,經500度C三分鐘退火後得到最佳電洞濃度為2*1017/cm3,遷移率3-55 cm2V-1s-1,但以2 sccm及5 sccm所沉積之薄膜卻顯示出n型,推測是因氮流量上升使得分子氮取代氧(N2)O形成雙倍淺層施子的機率升高,而當退火溫度升高伴隨著電阻率升高代表氮擴散出氧化鋅薄膜。


Nitrogen doped ZnO thin films have been prepared by reactive ion beam sputter deposition on quartz and glass substrates at 300C utilizing un-doped ZnO buffer layers. Experimental results show that with a nitrogen flow rate of 5 sccm and 0.5 sccm, the (002) diffraction peak of ZnO:N shifts to lower angles and exhibit preferred orientation along the c-axis, indicating the replacement of oxygen by molecular nitrogen and atomic nitrogen. Raman spectroscopy analysis shows three peaks at 275、436、582 cm-1, indicating the incorporation of nitrogen into ZnO. Post-growth annealing at 500C for three minutes results in the strongest 582 cm-1 peak intensity. Annealing at higher temperature reduces the 582 cm-1 peak intensity while improving the 436 cm-1 peak intensity, indicating out-diffusion of nitrogen and improved ZnO crystalline quality. Hall measurement shows that p-type ZnO was obtained utilizing 0.5 sccm nitrogen flow rate. Annealing at 500C for three minutes results in the highest hole concentration of 2*1017/cm3 with a mobility of 3-55 cm2V-1s-1. ZnO:N deposited at 2 and 5 sccm exhibit n-type, which is due to the formation of (N2)O.

論 文 摘 要.................................................................I Abstract..................................................................III 致謝.......................................................................IV 目錄........................................................................V 圖目錄....................................................................VII 表目錄......................................................................X 第一章 緒論................................................................1 1.1 前言..................................................................1 1.2 研究目的..............................................................2 1.3 氧化鋅簡介............................................................3 第二章 研究理論與文獻回顧..................................................4 2.1 毛細式離子束(Capillary gas field ion source)..........................4 2.2 離子束濺鍍沉積法......................................................5 2.3 p型氧化鋅文獻探討.....................................................6 2.3.1 氮p型氧化鋅薄膜製備方式及特性分析...............................6 2.3.2 氧化鋅本質及n型缺陷探討..........................................15 第三章 實驗與分析..........................................................23 3.1 實驗設備,條件及流程.................................................23 3.2 特性分析儀器.........................................................27 3.2.1 X-ray 繞射儀(X-ray diffractometer)...............................27 3.2.2 場發射掃描式電子顯微鏡 (Field emission scanning electron microscope, FE-SEM)....................................................................28 3.2.3 拉曼光譜儀 (Micro-Raman spectroscopy)............................29 3.2.4 二次離子質譜儀 (Secondary ion mass spectroscopy, SIMS)...........30 3.2.5 霍爾量測(Hall measurement).......................................31 第四章 實驗結果與討論......................................................36 4.1 不同參數氧化鋅緩衝層.................................................36 4.2 X-ray 繞射分析氮氧化鋅薄膜.........................................38 4.3 場發射掃描式電子顯微鏡分析氮氧化鋅薄膜.............................41 4.4 拉曼光譜分析氮氧化鋅薄膜...........................................44 4.5 二次離子質譜儀分析氮氧化鋅薄膜.....................................47 4.6 霍爾量測分析氮氧化鋅薄膜...........................................49 第五章 結論與未來展望.....................................................52 參考文獻...................................................................54

[1] . zgr, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morko, “A comprehensive review of ZnO materials and device,” J. Appl. Phys., Vol. 98, pp. 041301-1 - 041301-103, 2005.
[2] Anderson Janotti and Chris G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B., Vol. 76, pp. 165202-1 - 165202-22, 2007.
[3] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong and Y. P. Xie, “Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering,” J. Appl. Phys., Vol. 99, pp. 123510-1 - 123510-5, 2006.
[4] J. F. Mahoney, J. Perel and A. T. Forrester, “Capillaritron:A new, versatile ion source,” Appl. Phys. Lett., Vol. 38, pp. 320-322, 1981.
[5] Chr. Weissmantel, O. Fiedler, G. Hecht and G. Reisse, “Ion beam sputtering and its application for the deposition of semiconducting films,” Thin Solid Films, Vol. 13, pp. 359-366, 1972.
[6] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[7] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,” Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
[8] S. B. Krupanidhi, H. Hu and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[9] C. C. Lee, J. C. Hsu, D. T. Wei and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[10] K. Iwata, P. Fons, A. Yamada, K. Matsubara and S. Niki, “Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth, Vol. 209, pp. 526-531, 2000.
[11] D. C .Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, pp. 1830-1832, 2002.
[12] A. B. M. A. Ashrafi, I. Suemune, H. Kumano and S. Tanaka, “Nitrogen-Doped p-Type ZnO Layers Prepared with H2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy,” Jpn. J. Appl. Phys., Vol. 41, L1281, 2002.
[13] Shujie Jiao, Youming Lu, Zhengzhong Zhang, Binghui Li, Bin Yao, Jiying Zhang, Dongxu Zhao, Dezhen Shen and Xiwu Fan, “Optical and electrical properties of highly nitrogen-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys., Vol. 102, pp. 113509-1 - 113509-4, 2007.
[14] A.Kaschner, U. Haboeck, Martin Strassburg, Matthias Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Yhomsen, A. Zeuner, H. R. Alves, D. M. Hofmann and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett., Vol. 80, pp. 1909-1911, 2002.
[15] M. Sumiya, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki and H. Koinuma, “Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition,” J. Appl. Phys., Vol. 93, pp. 2562-2569, 2003.
[16] J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, X. J. Wang and G. He, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., Vol. 102, pp. 114903-1 - 114903-7, 2007.
[17] Hui Chen, Shulin Gu, Wei Liu, Shunming Zhu and Youdou Zheng , “Influence of unintentional doped carbon on growth and properties of N-doped ZnO films,” J. Appl. Phys., Vol.104, pp. 113511-1 - 113511-6, 2008.
[18] M. Joseph, H. Tabata, H.Saeki, K. Ueda and T. Kawai, “Fabrication of the low-resistive p-type ZnO by codoping method,” Physica B, Vol. 302-303, pp. 140-148, 2001.
[19] S.Y. Huang, S. Xu, J. W. Chai, Q. J. Cheng, J. D. Long and K. Ostrikov, “p-type doping of ZnO by means of high-density inductively coupled plasmas,” Mater. Lett., Vol. 63, 2009.
[20] Xin-Li Guo, Hitoshi Tabata and Tomoji Kawai, “Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source,” J. Cryst. Growth, Vol. 223, pp. 135-139, 2001.
[21] Veeramuthu Vaithianathan, Yong Hee Lee, Byung-Teak Lee, Shunichi Hishita and Sang Sub Kim, “Doping of As, P,and N in laser deposited ZnO films,” J. Cryst. Growth, Vol. 287, pp. 85-88, 2006.
[22] D. C. Look, G. C. Farlow, Pakpoom Reunchan, Sukit Limpijumnong, S. B. Zhang and K. Nordlund, “Evidence for Native-Defect Donors in n-Type ZnO,” Phys. Rev. Lett., PRL95, pp. 225502-1 - 225502-4, 2005.
[23] Chris G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
[24] Fumiyasu Oba, Atsushi Togo and Isao Tanaka, “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,” Phys. Rev. B., Vol. 77, pp. 245202-1 - 245202-6, 2008.
[25] S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo and D. L. Kwong , “p-type conduction in unintentional carbon-doped ZnO thin films,” Appl .Phys .Lett . Vol. 91, pp. 072101-1 - 072101-3, 2007.
[26] Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang and D. L. Liu, “Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., Vol. 95, pp. 6268-6272, 2004.
[27] Yen-Chin Huang, Zhen-Yu Li, Li-Wei Weng, Wu-Yih Uen, Shan-Ming Lan, Sen-Mao Liao, Tai-Yuan Lin, Yu-Hsiang Huang, Jian-Wen Chen and Tsun-Neng Yang, “Intrinsic p-type ZnO films fabricated by atmospheric pressure metal organic chemical vapor deposition,” J. Vac. Sci. Technol. A, Vol. 28, pp. 1307-1311, 2010.
[28] K. H. Nam, H. Kim, H. Y. Lee, D. H. Han and J. J. Lee, “Electrical and optical properties of undoped p-type ZnO films,” Surf. Coat. Technol., Vol. 202, pp. 5463-5466, 2008.
[29] Won Taeg Lim and Chang Hyo Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films., Vol. 353, pp. 12-15, 1999.
[30] V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,” J. Appl. Phys., Vol. 80, pp. 1063-1073, 1996.
[31] Manuel Cardona, “Vibrations in amorphous silicon and its alloys,” Journnl of Molectclar Structure., Vol. 141, pp. 93-107, 1986.
[32] Daxing Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil and Qi Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys., Vol. 94, pp. 2930-2936, 2003.
[33] Kyoung Kook Lim, Hyun Sik Kim, Dae Kue Hwang, Jae Hong Lim and Seong Ju Park, “Realization of p-type ZnO thin film via phosphorus doping and thermal activation of the dopant,” App. Phys. Lett., Vol. 83, pp. 63-65, 2003.

無法下載圖示 全文公開日期 2013/06/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE