簡易檢索 / 詳目顯示

研究生: 李啟瑋
Chi-Wei - Li
論文名稱: 黏土層開挖引致鄰近獨立基礎建物之損害預測研究
Evaluation of the Damage Potential for Buildings with Spread Footings Adjacent to Excavations in Clay
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 林宏達
Horn-Da Lin
鄧福宸
Fu-Chen Teng
廖瑞堂
Jui-Thng Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 173
中文關鍵詞: 預測建築物損害地中側向位移預測地中沉陷預測最大地表沉陷預測
外文關鍵詞: evaluate the damage potential of buildings, prediction of lateral soil movement, prediction of soil settlement, prediction of maximum ground surface settlement
相關次數: 點閱:314下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深開挖工程施工時會造成地盤的位移,此位移又可分為沉陷(垂直向)及側向位移(水平向),皆會對鄰近建築物造成影響。一般針對此類影響之分析大都採用自由場(greenfield)模式,以地表沉陷值作為鄰近建築物之沉陷值,此方法亦為國內一般設計分析時所採用。但建築物之基礎通常放置於地表下某一深度,針對埋置於地表下之基礎沉陷量及角變量 若僅以地表沉陷行為進行預測分析恐怕並不適當。除此之外,進行建物之安全評估時應考慮地盤側向位移造成的影響,也就是應該同時考量角變量以及側向應變 對鄰房造成之影響。有鑑於此,本研究之目的在於建立能夠合理預測地盤移動之簡化方法,分別對地盤沉陷及地盤側向位移之預測提出建議,並以自由場(greenfield)地盤反應來預測開挖引致鄰近獨立基礎建物之損害潛能。研究結果顯示,根據144組假設案例與台北國家企業中心之數值分析所建立的地盤位移預測法,能夠合理的預測地表下之地盤移動;針對鄰近開挖區之獨立基礎建物的損害評估,亦能得到相當合理之結果。


    Most of design consultants in Taiwan use the greenfield condition to evaluate the damage potential of buildings affected by excavation. The ground surface settlement obtained from the greenfield condition is adopted as the building’s settlement. However, building foundations are generally constructed at certain depths rather than at the ground surface. Therefore, calculating a building’s settlement and an angular distortion with only considering the ground surface behavior is inadvisable. In addition, it is more rigorous to consider the angular distortion and the horizontal strain simultaneously for the evaluation building safety. The purpose of this study is to establish a simplified method for the prediction of ground movement, and the assessment of the damage potential of buildings adjacent to a braced excavation by the greenfield condition analyses. Based on the 144 sets of hypothetical cases and a well-documented deep excavation case namely, the Taipei National Enterprise Center (TNEC) excavation, the methods to predict the ground settlement and the lateral ground movement profiles at various depths were developed. The results showed that the proposed methods could predict the ground settlement and lateral ground movement profiles with a good accuracy. The proposed method also provided good results for evaluating the damage potential of buildings with spread footings adjacent to the excavation.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 I 表目錄 V 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法及內容 2 第二章 文獻回顧 4 2.1 地盤位移之特性 4 2.1.1 地表沉陷之型態 4 2.1.2 地表沉陷之影響範圍 6 2.1.3 最大地表沉陷量 8 2.1.4 最大地表沉陷量發生位置 9 2.2 土壤之小應變行為 10 2.2.1 小應變之範圍 10 2.2.2 小應變下之應力應變行為 11 2.3 地表沉陷經驗預測法 12 2.4 建築物之安全評估 15 2.4.1 建築物經自重作用下之容許沉陷量 15 2.4.2 建築物經開挖引致之容許沉陷量 17 2.4.3 開挖引致結構物之損壞潛能評估 18 2.4.4 開挖引致不同基礎型式之建物沉陷探討 19 2.5 小結 20 第三章 數值分析模擬開挖案例 37 3.1 有限元素法分析採用之元素 37 3.1.1 平面應變8節點等參數元素 38 3.1.2 桿件元素 38 3.2 分析模式 38 3.2.1 雙曲線模式 38 3.2.2 不排水軟弱黏土模式(USC model) 41 3.3 土壤分析參數 44 3.3.1 排水層參數 44 3.3.2 不排水層參數 46 3.4 結構分析參數 47 3.4.1 連續壁參數 47 3.4.2 支撐參數 48 3.5 台北國家企業中心之案例分析 49 3.5.1 工程概述 49 3.5.2 監測系統概述 50 3.5.3 分析輸入參數之決定 51 3.5.4 網格邊界之設定 54 3.5.5 施工步驟模擬 54 3.5.6 分析結果比較 55 第四章 黏土層中地表沉陷及地表側向位移之預測 75 4.1 假設案例之設計說明 76 4.1.1 參數設計架構 76 4.1.2 分析網格及施工步驟 78 4.1.3 土壤參數輸入 80 4.2 迴歸分析之工具 80 4.3 迴歸分析模式之選擇 80 4.3.1 地表最大沉陷之迴歸模式 81 4.3.2 地表最大側向位移之迴歸模式 85 4.4 地表沉陷之預測法 90 4.4.1 地表最大沉陷量之預測 90 4.4.2 地表沉陷曲線之預測 91 4.5 地表側向位移之預測法 91 4.5.1 地表最大側向位移量之預測 92 4.5.2 凹槽型地表側向位移曲線之預測 92 4.6 實際開挖案例之預測比較 94 4.6.1 土壤強度參數之輸入說明 94 4.6.2 開挖案例基本介紹 94 4.6.3 地表最大沉陷量之預測結果 97 4.6.4 地表側向位移預測曲線之驗證 97 第五章 鄰房損壞之預測 119 5.1 地中沉陷之行為 120 5.2 地中沉陷之預測法 120 5.3 地中側向位移之預測法 122 5.4 實際開挖案例之驗證 124 5.5 實際開挖案例之鄰房損壞評估 127 第六章 結論與建議 163 6.1 結論 163 6.2 建議 165 參考文獻 167

    1. 丘達昌 (1992),「三向度有限元素法深開挖分析」,國立台灣工業技術學院營建工程系碩士學位論文。
    2. 王建智、林宏達、吳明峰 (1999),「黏土層深開挖引致之地表沉陷」,地工技術,第76期,第51 – 62頁。
    3. 林玉英、楊秦、張敏儀及鍾滿祥 (1970) ,「台北盆地上層土壤(松山層)剪力波初期測定結果及其在結構耐震設計上意義之初步研究」,中央研究院地球物理科學研究所籌備處研究報告。
    4. 林奕宏 (2016),「以反算分析探討深開挖分析之土壤參數」,國立台灣科技大學營建工程系碩士學位論文。
    5. 段筱玫 (2005),「軟弱粘土深開挖沉陷影響範圍之研究」,國立台灣科技大學營建工程系碩士學位論文。
    6. 秦中天、劉泉枝 (1997),「台北粉質粘土體積變化與不排水行為」,中國土木水利工程學刊,第九卷,第四期,第665 – 678頁。
    7. 陳玫臻 (2015),「黏土層開挖引致連續壁側向位移之預測」,國立台灣科技大學營建工程系碩士學位論文。
    8. 莫若楫(2001),「大地工程與基礎建設」,第九屆大地工程學術研究討論會論文集,論文編號 K001。
    9. 鄧建剛 (1985),「有限元素法於台北市支撐開挖工程之應用研究」,國立台灣工業技術學院營建工程系碩士學位論文。
    10. 廖瑞堂 (1996),「逆打深開挖之行為研究」,國立台灣科技大學營建工程系博士學位論文。
    11. 歐章煜、謝百鉤、丘達昌 (1992),「開挖引致之地表沉陷與建物之容許沉陷量」,地工技術,第40 期,第9 – 24頁。
    12. 歐章煜、謝百鈎 (2000),「利用擬塑性模式於粘土不排水條件之深開挖分析」,中國土木水利工程學刊,第十二卷,第四期,第703 – 713頁。
    13. 歐章煜、謝百鈎 (2000),「深開挖引致地表沉陷之預測」,深開挖工程設計與施工實務,林宏達主編,科技圖書公司,台北。
    14. 歐章煜、張聰耀 (2002),「台北沉泥質黏土之變形特性研究」,中國土木水利工程學刊,第十四卷,第三期,第531 – 540頁。
    15. 歐章煜 (2009),「深開挖工程-分析設計理論與實務(2版)」,科技圖書,台北。
    16. 謝百鈎、歐章煜 (1996),「以經驗公式預測台北盆地深開挖引致之地表沉陷」,地工技術,第53期,第5 – 14頁。
    17. 謝百鈎 (1999),「黏土層開挖引致地盤移動之預測」,國立台灣科技大學營建工程系博士學位論文。
    18. 顏東利、張桂才 (1991),「建物允許沉陷量之探討」,地工技術,第34期,第78 – 96頁。
    19. 龔東慶 (2003),「考慮台北沉泥質黏土小應變行為之深開挖地表沉陷分析」,國立台灣科技大學營建工程系博士學位論文。
    20. Atkinson and Sallfors G. (1991), “Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests.” Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, pp.915 – 956.
    21. Bjerrum, L. (1963), “Discussion.” Proc., Conf. on Soil Mechanics and Foundation Engineering, Vol.3, Norwegian Geotechnical Institute, Oslo, Norway, pp.1 – 3.
    22. Bjerrum, L. (1963), “Allowable Settlement of Structures.” Proceeding of European Conference on Soil Mechanics and Foundation Engineering, Weisbaden, Germany, Vol. 2, pp.35 – 137.
    23. Burland, J. B., and Wroth, C. P. (1974), “Settlement of buildings and associated damage.” Proc., Conf. on Settlement of Structures, Pentech, London, pp.611 – 654.
    24. Boscardin, M. D., and Cording, E. J. (1989), “Building response to excavation-induced settlement.” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 1, pp.1 – 21.
    25. Boone, S. J. (2001), “Assessing construction and settlement-induced building damage.” Proc., 54th Canadian Geotechnical Conf., Calgary, Canada, 854 – 861.
    26. Clough, G. W. and O’Rourke, T. D. (1990), “Construction-Induced Movements of In-situ walls.” Geotech. Spec. Publ. No.25-Design and Performance of Earth Retaining Structure, American Society Civil Engineers, New York, pp.439 – 470.
    27. Carter, J. P., and Balaam, N. P. (1990), “Program AFENA, a general finite element algorithm.” Centre for geotechnical research, University of Sydney, Australia.
    28. Duncan, J. M. and Chang, C.Y. (1970) “Nonlinear Analysis of Stress and Strain in Soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No.5, pp.637 – 659.
    29. Duncan, J. M., Byrne, P., Wong, K. S. and Mabry, P. (1980). “ Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stress and Movements in Soil Masses.” Report No. UCB/GT/80-1, University of California Berkeley, California.
    30. Finno, R. J., Atmatzidis, D. K. and Perkins, S. B. (1989). “Observed Performance of a Deep Excavation in Clay.” J. Geotech. Engrg., Vol. 115, No.8, pp.1045 – 1064.
    31. Finno, R. J., and Bryson, L. S. (2002). “Response of building adjacent to stiff excavation support system in soft clay.” Journal of Geotechnical and Geoenvironmental Engineering, vol 16, No. 1, pp. 10 – 20.
    32. Finno, R. J., Bryson, L. S., and Calvello, M. (2002). “Performance of a stiff support system in soft clay.” Journal of Geotechnical and Geoenvironmental Engineering, vol 128, No. 8, pp. 660 – 671.
    33. Hsieh, P. G. and Ou, C. Y. (1998), “Shape of Ground Surface Settlement Profiles Caused by Excavation.” Canadian Geotechnical Journal, Vol. 35, No.5, pp.1004 – 1017.
    34. Hsiung, B. C. (2002) “Engineering Performance of Deep Excavation in Taipei.” Ph.D. Thesis, University of Bristol.
    35. Hsieh, P. G. and Ou, C. Y. (2011), “Analysis of Nonlinear Stress and Strain in Clay under the Undrained Condition.” Journal of Mechanics, Vol. 27, No.2, pp.201 – 213.
    36. Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F. and Poulos, H.G.(1977) “Stress-Deformation and Strength Characteristic.” Proceeding of the Ninth International Conference on soil mechanics and Foundation Engineering, Tokyo, Vol.2, pp.421 – 494.
    37. Lim, A., Ou, C. Y. and Hsieh, P. G. (2010) “Evaluation of Clay Constitutive Models for Analysis of Deep Excavation under Undrained Condition.” Journal of GeoEngineering, Vol. 5, No.1, pp.9 – 20.
    38. Nicholson, D. P. (1987), “The Design and Performance of the Retaining Wall at Newton Station.” Proceeding of Singapore Mass Rapid Transit Conference, Singapore, pp.147 – 154.
    39. Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993), “Characteristics of Ground Surface Settlement during Excavation.” Canadian Geotechnical Journal, Vol. 36, pp.210 – 223.
    40. Ou, C. Y., Liao, J. T. and Lin, H. D. (1998) “Performance of Diaphragm Wall Constructed Using Top-Down Method.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.9, pp.798 – 808.
    41. Ou, C. Y. and Hsieh, P. G. (2011), “A Simplified Method for Predicting Ground Settlement Profiles Induced by Excavation in Soft Clay.” Computers and Geotechnics, Vol. 38, pp.987 – 997.
    42. Wahls, H. E. (1981), “Tolerable Settlement of Buildings.” Journal of the Geotechnical Engineering Division, ASCE, Vol.107, No.11, pp.1489 – 1504.
    43. Wood, D. M. (1990), “Soil behavior and critical state soil mechanics.” Cambridge, MA: Cambridge University Press.
    44. Skempton, A. W., and MacDonald, D. H. (1956), “The allowable settlements of buildings.” Proceeding of Institution of Civil Engineers, London, 6, pp.727 – 768.
    45. Son, M., and Cording, E. J. (2005), “Estimation of building damage due to excavation-induced ground movements.” J. Geotech. Geoenviron. Eng., Vol.131, No.2, pp.162 – 177.

    46. Schuster, M., Kung, T. C., Juang, C. H. and Hashash, Y. M. A. (2009) “Simplified Model for Evaluating Damage Potential of Building Adjacent to a Braced Excavation.” J. Geotech. Geoenviron. Eng., Vol.135, No.12, pp.1823 – 1835.

    QR CODE